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Semiclassical approximations to diffractive effects in the annulus billiard

N. C. Snaith* and D. A. Goodings
Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1

~Received 27 August 1996; revised manuscript received 18 December 1996!

The semiclassical theory formulated by Bogomolny@E. B. Bogomolny, Nonlinearity5, 805~1992!# employs
a transfer operator constructed from classical trajectories that connect points on a suitably chosen Poincare´
surface of section. In this paper we study the two-dimensional annulus billiard, and modify Bogomolny’s
transfer operator to include diffractive paths. The penumbra contributions@H. Primacket al., Phys. Rev. Lett.
76, 1615 ~1996!#, which correspond to diffractive paths passing close to the inner circle of the annulus, are
found to account for most of the difference between the exact transfer operator and Bogomolny’s semiclassical
transfer operator. When these diffractive effects are included, the semiclassical energy eigenvalues are brought
much closer to the exact quantum energy eigenvalues.@S1063-651X~97!07005-0#

PACS number~s!: 05.45.1b, 03.65.Sq
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I. INTRODUCTION

Semiclassical approximations to quantum mechanics
ten provide insights into the behavior of physical syste
that are not obtained by simply solving the Schro¨dinger
equation with appropriate boundary conditions. For nonin
grable systems the Gutzwiller trace formula@1,2# and the
closely related dynamicalz function @3,4# give a semiclassi-
cal description based on the periodic orbits of the class
system. Knowing the classical action, the Maslov index, a
the stability index of the shortest periodic orbits of a giv
system, one can use systematic expansions of the dynam
z function @5–7# to obtain a good approximation to the e
ergy eigenvalues of the quantum system. A comparison
several methods employing periodic orbit theory has b
given for the wedge billiard for angles corresponding to h
chaos@8#.

The trace formula and the dynamicalz function may be
regarded as the leading approximation of an expansio
powers of Planck’s constant@9–11#. It would appear that it is
very difficult to calculate exactly the correction terms cor
sponding to the next power of\ in the expansion. However
there are many systems in which an important correction
standard periodic orbit theory—not necessarily of higher
der in \—can be obtained by treating diffractive effects
the spirit of the geometric theory of diffraction@12,13#.
Wirzba and co-workers@14–17# extended periodic orbi
theory to include periodic orbits containingdiffractive paths,
i.e., segments in which the wave nature of the particle is
prime importance. They successfully applied their appro
to calculating the scattering resonances of two-disk
three-disk systems in two dimensions.

The diffractive paths may have various forms. In one ki
the particle wave creeps along a smooth arc of a cur
surface, radiating at each point along the creeping path@14–
17#. In another, it propagates to and from a vertex—a po
on the boundary of the system at which the direction of
tangent changes discontinuously. Examples of this type

*Present address: School of Mathematics, University of Bris
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paths passing through the vertex of a triangle@18#, the vertex
of a hyperbola in the limit that it has narrowed down to
straight line@19#, either of the vertices of two wedges whos
bisectors lie on a common axis@20#, and the vertex of the
cardioid billiard@21#. Diffractive effects also occur when th
system encloses a point scatterer@22#, small circular disks
@23#, or a singular magnetic flux line@24–26#. Still another
diffractive effect—the one treated in this paper—occurs u
der grazing conditions in which some classical trajector
are reflected from a smooth surface while close parallel o
are not. In a recent study of the Sinai billiard, Primacket al.
@27# derived important diffractive corrections to the sem
classical density of states~and its Fourier transform! by
modifying the propagator for paths in the vicinity of th
tangent to the circular disk. With the exception of Ref.@22#,
all of these studies have been carried out in the framewor
periodic orbit theory.

A different semiclassical theory, not depending on t
periodic orbits of the system, has been developed by Bo
molny @28,29#. The theory is formulated in terms of a tran
fer operator and a suitably defined Poincare´ surface of sec-
tion ~PSS! in configuration space. For a system with tw
freedoms, the PSS is simply a one-dimensional curve, u
ally taken to be the boundary in billiard systems. For tw
freedoms the transfer operator has the form

T~q9,q8;E!5(
cl.tr.

1

~2p i\!1/2
U ]2S~q9,q8;E!

]q9]q8
U1/2

3exp@ iS~q9,q8;E!/\2 inp/2#, ~1!

whereq8 andq9 are points located on the PSS. The summ
tion is over all classical trajectories which cross the PSS o
once in going fromq8 to q9 and have the normal compone
of the momentum in the same direction atq8 and q9. For
each such trajectory one needs the action at energyE, de-
noted byS(q9,q8;E), and the phase indexn, which is related
to the number of points on the trajectory at which the se
classical approximation is not valid.

A finite approximation to the transfer operator in coord
nate space can be constructed by dividing the accessible
of the PSS intoN cells, thenth cell centered onqn having
l,
5212 © 1997 The American Physical Society
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55 5213SEMICLASSICAL APPROXIMATIONS TO DIFFRACTIVE . . .
width Dn . In terms of the transfer operatorT(qm ,qn ;E)
from qm in cell m to qn in cell n, the matrix element
Tmn(E) is defined to be

Tmn~E!5T~qm ,qn ;E!~DmDn!
1/2. ~2!

Then the condition for an energy eigenvalue is that

det@dmn2Tmn~E!#50. ~3!

We note that this equation will be satisfied whenever one
the eigenvalues of theT matrix is equal to unity. Bogomol-
ny’s theory offers an appealing alternative to periodic or
theory, for both integrable and nonintegrable syste
@30,31#. Its main advantage is that, instead of having to fi
systematically the periodic orbits of a given system and c
culate their properties, one has to calculate only the act
its second derivative, and the phase index for classical
jectories connecting points on the PSS. Furthermore, it
been found that the resulting semiclassical energy eigen
ues converge to definite values as the cell size inphase space
~constructed using the coordinate on the PSS together
its conjugate momentum! approaches roughlyh/10 @30#.

The question we set out to investigate is how to mod
Bogomolny’s theory to include diffractive paths, such as o
cur in the geometric theory of diffraction@12,13#, in addition
to the purely classical trajectories required by Eq.~1!. In this
paper we shall describe how this can be done for a sim
system, the annulus billiard. If the outer circle of the annu
is chosen to be the Poincare´ surface of section in configura
tion space, one might expect that diffraction will be impo
tant for paths that pass close to the inner circle of the an
lus. As mentioned above, such paths have been show
Primacket al. @27# to be very important for the Sinai billiard
which differs from the annulus billiard only in having
square outer boundary instead of a circular one.

An attractive feature of the annulus billiard is the fact th
the circular symmetry makes it possible to obtain the ene
eigenvalues of the system by a simple procedure. This
ables us to calculate the energy eigenvalues using diffe
semiclassical approximations. We are particularly interes
in seeing how the results calculated from Bogomoln
transfer operator constructed from purely classical traje
ries compare with the results obtained with the inclusion
diffractive paths.

In Sec. II we describe the exact Green function for t
quantum system, and show how to construct the corresp
ing transfer operator and its eigenvalue curves~as a function
of the energy!. Section III describes semiclassical appro
mations to the exact Green function in three differe
regions—the illuminated region, the penumbra, and
shadow region. In Sec. IV, the semiclassical transfer op
tor, modified to include diffractive paths, is shown in th
three different regions and compared with the ex
quantum-mechanical transfer operator. The correspon
semiclassical energy eigenvalues, with and without diffr
tive corrections, are calculated and compared with the e
energies in Sec. V. As a standard for comparison, we a
give the energy eigenvalues calculated by the sim
Einstein-Brillouin-Keller~EBK! quantization procedure. Ou
main findings are summarized in Sec. VI.
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II. EXACT GREEN FUNCTION AND TRANSFER
OPERATOR FOR THE ANNULUS BILLIARD

The annulus billiard consists of a particle confined to t
region between two concentric circles of radiia andR, with
a,R. Since the potential is zero in the annular region,
Green function for the quantum system satisfies the equa

2
\2

2m
¹ r
2G~r ,r 8;k!2

\2k2

2m
G~r ,r 8;k!52d~r2r 8!. ~4!

The energy E of the particle has been written a
\2k2/(2m), where\k is the magnitude of the linear momen
tum andm is the mass of the particle. Representingr by
(r ,u) and r 8 by (r 8,u8), one can show that the solution o
Eq. ~4! which is zero on the circle of radiusa and has the
form of an outgoing wave in the annular region is@23,27#

G~r ,r 8;k!5 (
l52`

`

gl~r ,r 8;k!exp@ i l ~u82u!#, ~5!

gl~r ,r 8;k!52
im

4\2 @Hl
2~kr,!1Sl~ka!Hl

1~kr,!#Hl
1~kr.!,

~6!

where r, is the lesser andr. the greater ofr and r 8, and
Sl(ka)52Hl

2(ka)/Hl
1(ka). Hl

2(x) and Hl
1(x) are the

Hankel functions defined in terms of the ordinary Bes
functions asHl

6(x)5Jl(x)6 iYl(x).
We now apply the boundary integral method@32–34# to

the outer circle of radiusR, regarded as the boundaryB.
Imposing the condition that the wave functionc(r ) is zero
on B, one finds that whenr and r 8 lie on the boundary,

R
B
G~r ,r 8;k!

]c~r 8!

]nr8
dl850, ~7!

where]c(r 8)/]nr8 is the normal derivative atr 8, anddl8 is
an infinitesimal increment along the boundary. This is t
condition that must be satisfied whenk corresponds to an
energy eigenvalue of the Schro¨dinger equation for the par
ticle.

Equation~7! can be solved by dividing the boundaryB
into N cells of widthD52pR/N, with centers at positions
r i5(R,u i), i50,1, . . . ,N21 (rN5r0). Denoting
@]c(r 8)/]nr8#D at positionr j by Aj , we obtain

(
j50

N21

G~u i ,u j ;k!Aj50, i50,1, . . . ,N21. ~8!

A nontrivial solution exists when

det@G~u i ,u j ;k!#50. ~9!

However, this equation cannot be used as it stands bec
the diagonal elements~for which r5r 8) are infinite.

Because of the circular symmetry of the annulus, we n
only consider theN distinct elementsG(u0 ,u j ;k) with
u j5 j (2p/N). Despite the singularity atj50, it is instruc-
tive to calculateuG(u0 ,u j ;k)u as a function of the angle
u j2u0. This is accomplished by settingu82u5u j2u0, and
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5214 55N. C. SNAITH AND D. A. GOODINGS
r5r 85R in Eqs.~5! and~6!. For simplicity we shall hence
forth denoteu j2u0 by u and the corresponding Green fun
tion by G(u;k). Calculations ofuG(u;k)u as a function of
u for two different values ofk are shown as the solid curve
in Figs. 4–6.~The values ofk were chosen to bek eigenval-
ues close to 10 and 50, in each case. However, there i
visible change in any of the plotted curves in the figures
k is taken to be exactly 10 or 50, i.e., not corresponding t
k eigenvalue.! We shall refer to these curves as the ex
Green function since they were calculated from the ex
solution of Eq.~4! given by Eqs.~5! and~6!. Note that since
uG(2u;k)u5uG(u;k)u, we have plotteduG(u;k)u only for
u in the range between 0 andp.

The problem of the singular elementsG(u0 ,u0 ;k) in Eq.
~9! can be dealt with by the following procedure@28#, which
leads to Bogomolny’s transfer operator. First we constr
the matrix representation of the Green functionG(u,u8;k)
for r5(R,u) andr 85(R,u8) in the set of orthonormal basi
functions$exp(ilu)/A2p%:

Gll 8~k!5
1

2pE0
2p

duE
0

2p

du8exp~ i l u!G~u,u8;k!

3exp~2 i l 8u8!. ~10!

From the correct form forG(u,u8;k) whenu8 is very close
to u @35,28#, one can show that, whenuu2u8u!1,

Gll 8~k!52
im

\2

1

~k2R22 l 2!1/2
d l l 8, ~11!

which is singular whenu l u5kR. @If, for the moment, we
think of l as a continuous variable representing the class
angular momentum~in units of \), it is easy to see that th
maximum value ofu l u is kR.# Following Bogomolny@28#,
we now modify the condition det@Gll 8(k)#50 for ak eigen-
value to

det@G̃ll 8~k!#50, G̃ll 8~k!5clcl 8Gll 8~k!, ~12!

where the constantscl andcl 8 are given by

cl5
\

A2 im
~k2R22 l 2!1/4. ~13!

Substituting Eqs.~5! and ~6! in Eq. ~10!, one finds that the
matrix G̃ll 8(k) is diagonal:

G̃ll 8~k!5
2p i\2

m
~k2R22 l 2!1/2gl~R,R;k!d l l 8, u l u<kR.

~14!

From Eq.~12!, a k eigenvalue occurs wheneveranyof these
diagonal elements is equal to zero. Thus, from Eq.~6!, a k
eigenvalue of the Schro¨dinger equation occurs when

Hl
1~kR!Hl

2~ka!2Hl
1~ka!Hl

2~kR!50, ~15!

or when

Jl~ka!Yl~kR!2Yl~ka!Jl~kR!50. ~16!
no
f
a
t
ct

t

al

By solving the Schro¨dinger equation for the annulus wit
Dirichlet boundary conditions on both circles, one can sh
that Eq.~16! is the condition for an exact energy eigenvalu
For each value ofl there is an infinite number of distinctk
values satisfying Eq.~15! or ~16!. ~We shall refer toenergy
eigenvaluesand k eigenvaluesinterchangeably in what fol-
lows.!

Condition ~12! for a k eigenvalue may also be written a

det@d l l 82Tll 8~k!#50, Tll 8~k!52G̃ll 8~k!1d l l 8,
~17!

where the matrixTll 8(k) is the quantum-mechanical versio
of Bogomolny’s transfer operator@28# in the l representation.
Since theT operator is diagonal in this representation,
eigenvalues as a function ofk are, from Eqs.~14! and ~17!,

l l~k!52
2p i\2

m
~k2R22 l 2!1/2gl~R,R;k!11

5
p

2
~k2R22 l 2!1/2@Hl

1~kR!Hl
2~ka!

2Hl
1~ka!Hl

2~kR!#
Hl

1~kR!

Hl
1~ka!

11, ~18!

for l50,61,62, . . . . An energy eigenvalue of the Schro¨-
dinger equation occurs wheneverl l(k)51. ~Clearly,
l2 l(k)5l l(k), implying that the eigenvalue curves are do
bly degenerate, except whenl50.! A typical plot ofl l(k) in
the complex plane is shown in Fig. 1. The curve starts ou
11 whenk5 l /R, and, after an ‘‘initial transient,’’ moves
onto the unit circle. Ask continues to increase, it wind
around the unit circle in a counterclockwise direction, yie
ing a k-eigenvalue each time it crosses the real axis at11.
Similar plots ofT-matrix eigenvalue curves have been giv
previously by Haggerty@31#, Lefebvre @36#, and Rouvinez
and Smilansky@37#.

For comparison with the semiclassical approximations
the transfer operator to be described later in the paper,
require matrix elements ofT in the u representation. As be
fore, the PSS~the outer circle! is divided intoN cells of

FIG. 1. A typical plot ofl l(k) in the complex plane.
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55 5215SEMICLASSICAL APPROXIMATIONS TO DIFFRACTIVE . . .
width Du52p/N, with centers at positionsr i5(R,u i),
i50,1, . . . ,N21. In the u representation, the matrix ele
ment connecting cellsi and j is

T~u j ,u i ;k!5
1

2p (
l52`

`

(
l 852`

`

exp~ i l 8u i !Tll 8~k!

3exp~2 i l u j !Du. ~19!

Because of the circular symmetry, there are onlyN distinct
matrix elementsTj (k)5T(u j ,0;k), obtained by putting
u i50, u j5 j (2p/N). SinceTll 8(k) is diagonal, from Eqs.
~14!, ~17!, and~19!, we find

Tj~k!5
1

2p (
l52kR

kR F2
2p i\2

m
~k2R22 l 2!1/2gl~R,R;k!11G

3exp~2 i l u j !Du. ~20!

Note that the sum overl has been restricted to integers in t
range between2kR andkR in order thatk2R22 l 2 be posi-
tive. From Eqs.~2! and~20!, we can deduce the exact tran
fer operator in the form of Eq.~1!:

Texact~u;k!5
1

2p (
l52kR

kR F2
2p i\2

m
~k2R22 l 2!1/2

3gl~R,R;k!11Gexp~2 i l u!, ~21!

whereu5uu92u8u.
The transfer matrixT(u j ,u i ;k) has the circulant form

S T0 T1••• TN22 TN21

TN21 T0••• TN23 TN22

A A� A A

T2 T3••• T0 T1

T1 T2••• TN21 T0

D , ~22!

in which the matrix elementsTj are given by Eq.~20!. Fol-
lowing Lefebvre@36#, we make use of the fact that the e
genvalues of such a matrix can be expressed in the sim
form

ln~k!5 (
j50

N21

Tj~k!exp~ i2p jn/N!, n51, . . . ,N.

~23!

As shown above, ak eigenvalue occurs wheneve
ln(k)51. Note also thatl2n(k)5ln(k), since T2 j (k)
5Tj (k).

Equation~23! enables us to calculate thek eigenvalues to
high accuracy. In fact, withN chosen to be 100, the resul
based on Eq.~23! were found to agree with the results o
tained from Eq.~16! to six significant figures~for the lowest
15 distinct eigenvalues!. This is not entirely surprising sinc
if we substituteTj (k) given by Eq.~20! in Eq. ~23!, with
u j5 j (2p/N), replace the sum overj by an integral over
u, and use the orthonormality of the function
$exp(ilu)/(2p)1/2%, we find thatln(k) is equal tol l(k) given
le

by Eq. ~18!. Thus it is appropriate to label the eigenvalu
curves byl and write Eq.~23! as

l l~k!5l2 l~k!5 (
j50

N21

Tj~k!exp~ i l u j !, l50,1, . . . ,

~24!

whereTj (k) is given by Eq.~20! with Du52p/N.

III. SEMICLASSICAL APPROXIMATIONS
OF THE GREEN FUNCTION

Up to this point we have been considering the ex
quantum-mechanical Green function, Eqs.~5! and ~6!. Our
main interest is in exploring what happens when this ex
Green function is replaced by semiclassical Green functi
corresponding to different approximations. The semiclass
approximations described below are similar in many respe
to those obtained by Primacket al. @27# in their study of
diffractive effects in the Sinai billiard. They are based on t
mathematical expansions described in great detail by N
senzveig@38#.

To obtain the semiclassical approximations, we first u
the Poisson summation formula to rewrite Eqs.~5! and ~6!
~with u now denotingu82u) as @27#

G~r ,r 8;k!5 (
M52`

`

2
im

4\2E
2`

`

dl@Hl
2~kr,!

1Sl~ka!Hl
1~kr,!#Hl

1~kr.!

3exp~ i l u1 i2pMl !, ~25!

where, as before,Sl(ka)52Hl
2(ka)/Hl

1(ka). Following
Primacket al. @27# we consider only the termM50 in the
summation overM , which they found to make the dominan
contribution in their study of the Sinai billiard. In what fol
lows we requireG(u0 ,u j ;k) with r,5r.5R. Denoting the
contribution to the Green function from the termM50 by
G0(u;k), whereu5u j2u0, we have,

G0~u;k!52
im

4\2E
2`

`

dl@Hl
2~kR!1Sl~ka!Hl

1~kR!#

3Hl
1~kR!exp~ i l u!. ~26!

Relative to the positionu50, the outer circle of the an
nulus is divided into three regions: the illuminated regio
the penumbra, and the shadow region~see Fig. 2!. From the
symmetry of Fig. 2, it suffices to consideru to be in the
interval (0,p). In the Appendix we use the conditions on th
validity of the approximations in the different regions to d
termine the boundary points. The boundary point betwe
the illuminated region and the penumbra is found to be

u ip5cos21S ka1~ka!1/3

kR D1cos21~a/R!2~ka!21/3, ~27!

while the point separating the penumbra from the shad
region is

ups52cos21~a/R!1~3/2!~ka!21/3. ~28!
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5216 55N. C. SNAITH AND D. A. GOODINGS
When the angleu lies in the illuminated region, the lead
ing terms resulting from Nussenzveig’s analysis are,
u<u ip ,

G0
~ i !~u;k!52

eip/4m

~2p!1/2\2 F eikL1

~kL1!
1/22

eikL2

~kL2!
1/2

3SRcosa2L2/2

Rcosa D 1/2G , ~29!

where L1 is the length of the direct path from (R,0) to
(R,u), and L2 is the length of the path reflected from th
inner circle, as shown in Fig. 2. In Eq.~29!, a is the angle
between the reflected ray and the inward normal at (R,0) or
(R,u). One can see that when the reflected path beco
tangent to the inner circle, the square-root factor involv
a goes to zero. Note that the negative sign preceding
second term in Eq.~29! can be interpreted as resulting fro
a phase change ofp on reflection from the inner circle.

When u lies in the penumbra, the leading terms in t
expansions yield the result, foru ip<u<ups,

G0
~p!~u;k!52

eip/4m

~2p!1/2\2 F eikL

~kL!1/2
F~`!2F~n!

~2i !1/2 G
1

~ka!1/3C

2pkLr
exp@ ik~2Lr6ag0!#, ~30!

where F(n)5*0
nexp(ipt2/2)dt and n5(kL/p)1/2@sin21(a/

R)2(p/22u/2)]. According to Nussenzveig@38# and Pri-
mack et al. @27#, the constant C has the value
C50.996 15exp(ip/3). The first term in Eq.~30!, which is
the contribution from the direct path of lengthL, is the same
as the first term of Eq.~29! multiplied by theFresnel factor
@F(`)2F(n)#/(2i )1/2. This factor varies smoothly betwee
0 and 1, tending to unity asu approaches the border of th
illuminated region, and tending to zero asu approaches the
shadow boundary.@At the angle specifying the geometric
shadow,u52cos21(a/R), n is zero and the Fresnel factor
equal to 1

2.# The second term in Eq.~30! is the glancing
contribution, which depends on whetheru lies outside or
inside the region of the geometrical shadow. He
Lr5(R22a2)1/2, and the2 and1 signs apply to the uppe

FIG. 2. The annulus billiard showing the illuminated, penumb
and shadow regions relative tou050. The direct and reflected path
from u0 to u j are shown in the illuminated region.u ip is the bound-
ary between the illuminated region and the penumbra.ups is the
boundary between the penumbra and the shadow region.
r

es
g
e

e

and lower cases shown in Fig. 3, respectively. In the up
case, the path length appearing in the exponential is sh
ened by the arc lengthag0 between the points of tangency
In the lower case, the path length includes the distanceag0
that the diffracted ray creeps along the surface of the d
Equation~30!, which we have derived independently@39#, is
exactly the same as the result obtained by Primacket al.
@27#.

Finally, whenu lies in the shadow region, Nussenzveig
analysis leads to the following form for the Green functio
for ups<u<p:

G0
~s!~u;k!52

eip/3m

2p\2 ~ka/2!1/3(
n

~k2R22 l n
2!21/2

@Ai 8~2xn!#
2

3exp$ i @2~k2R22 l n
2!1/2

22l ncos
21~ l n /kR!1 l nu#%, ~31!

where2xn is the nth zero of the Airy function Ai(2x),
Ai 8(2xn) is the derivative of the Airy function at2xn , and
l n5ka1(ka/2)1/3xne

ip/3. Although this expression looks
complicated, one can show that the real part of
exponent of the exponential function is equal
2(A3/2)(ka/2)1/3g0xn , where g05u22 cos21(a/R) is the
creeping angle, similar tog0 in the lower part of Fig. 2.
Since xn is positive and increases asn increases
(x152.338,x254.088,x355.521, . . . , x10512.829, . . . ),
the contributions to the sum overn in Eq. ~31! will decrease
fairly rapidly as long as (ka)1/3g0 is greater than unity. Thus
the conditiong0.(ka)21/3 will be assumed to hold in the
shadow region, as stated in the Appendix. Then the sum
Eq. ~31! can be limited to the first few poles ofSl(ka) near-
est the real axis in the complexl plane. Equation~31! is
essentially the same as the contributions from creep
waves described by Vattay, Wirzba, and Rosenqvist@16#.

In addition to the path we have just described, there
other diffractive paths containing longer creeping arcs wh
will contribute, in principle, to the semiclassical Green fun
tion in all three regions. For example, foru still in the range
(0,p), there is a somewhat longer diffractive path to t
shadow region which creeps around an arc on the oppo
side of the inner circle. The~positive! value of the creeping
angle for this path isg052p22 cos21(a/R)2u, which has
its smallest value whenu5p. This path, and other eve

, FIG. 3. Two diffractive paths in the penumbra region of t
annulus billiard. In the upper situation, the effective length of t
diffractive path is 2Lr2ag0. In the lower case it is 2Lr1ag0.
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55 5217SEMICLASSICAL APPROXIMATIONS TO DIFFRACTIVE . . .
longer paths, which have their mathematical origin in t
sum overM in Eq. ~25!, can be included in the semiclassic
Green function~in any region! by adding contributions like
Eq. ~31!, with u replaced byu12pM , M561,62, . . . .
However, we have neglected all such contributions in
calculations that we are about to describe, since it was fo
that when the shadow region exists, the contribut
G0
(s)(u;k) from theshortestcreeping path became negligib

well beforeu5p.
We are now in a position to consider different semicla

sical approximations to the Green function, and comp
them with the exact Green function. In Figs. 4–6, whi
correspond to the radiusa of the inner circle being equal to
0.1R, 0.3R, and 0.5R, respectively, the solid curves show th
modulus of the exact Green function, calculated as descr
in Sec. II. Plots for two differentk-eigenvalues~close to 10
and 50! are shown in each case. The solid bar under thu
axis indicates the penumbra region in each plot, extend
from u ip given by Eq.~27! to ups given by Eq.~28!.

The simplest semiclassical approximation consists
G0
( i )(u;k) given by Eq. ~29! being employed, not only

throughout the illuminated region, but also into the penu
bra region, until the straight line joining (R,0) to (R,u) is
tangent to the inner circle. We have shown that this exp
sion is exactly the same as Bogomolny’s semiclassical Gr
function on the Poincare´ surface of section, chosen to be th
outer circle of the annulus@see Eq.~3.10! of Ref. @28##. Thus,
this approximation is equivalent to Bogomolny’s Poinca´
map from (R,0) to (R,u) involving two classical trajectories
the direct one and the one reflected from the inner circle.

FIG. 4. uG(u;k)u as a function ofu, for a50.1R. The solid
curves are the exact Green function, calculated from Eqs.~5! and
~6!. The dotted curves are the Bogomolny semiclassical Green f
tion, as explained in the text. The dashed curves are the semi
sical Green function calculated from Eqs.~30! and~31!, which de-
scribe the diffractive paths in the penumbra and shadow regi
Upper plot: eigenvaluek59.936 calculated withN5200; lower
plot: eigenvaluek549.959 calculated withN5250. Herek is re-
lated to the energy byE5\2k2/(2m), in units in which
\5m51.N is the dimension of theT matrix, which is equal to the
number of cells on the PSS.
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Green function is assumed to be zero in the region of
geometrical shadow. This approximation, which we shall c
theBogomolny semiclassical approximation, is shown as the
dotted curves in Figs. 4–6. Fork eigenvalues close to 10 an
50, the dotted curves are very close to the exact Green fu
tion throughout the region 0,u,u ip , but there are notice-
able differences in the penumbra region where Eq.~29! is not
valid.

The modifications to the penumbra and shadow regio
calculated from Eqs.~30! and~31!, are shown as the dashe
curves in Figs. 4–6.@The sum overn in Eq. ~31! was taken
over ten terms.# It may be seen that the agreement betwe
these curves and the exact Green function is very good.
satisfying, though somewhat surprising, that keeping o
the leading terms of Nussenzveig’s expansions for the p

c-
as-

s.

FIG. 5. The same as Fig. 4 fora50.3R. Upper plot: eigenvalue
k59.939 calculated with N5200; lower plot: eigenvalue
k549.959 calculated withN5300.

FIG. 6. The same as Fig. 4 fora50.5R. Upper plot: eigenvalue
k510.189 calculated withN5250; lower plot: eigenvalue
k549.999 calculated withN5350.
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5218 55N. C. SNAITH AND D. A. GOODINGS
umbra, Eq.~30!, accounts for almost all of the differenc
between Bogomolny’s semiclassical approximation and
exact Green function. We also note that in Fig. 6, wher
shadow region exists, the contribution given by Eq.~31! is
too small to be visible on the plots.

IV. TRANSFER OPERATOR INCLUDING
DIFFRACTIVE PATHS

We now turn to the calculation of the transfer operator
the two approximations described in Sec. III. Guided
Bogomolny’s route from the semiclassical Green function
the transfer operator@28#, and by Eqs.~12! and ~13!, we
postulate the semiclassical transfer operator to be

Tsc~u;k!52
i\2

m (
paths

~kRcosf!Gsc~u;k!, ~32!

where the sum is over different geometrical paths fr
(R,0) to (R,u). @In the notation of Eq.~1!, u is uu92u8u.#
Heref is the angle between the inward normal to the ou
circle and the direction of the geometrical path immediat
after being reflected from the outer circle at (R,0) or at
(R,u). In Eq. ~32!, Gsc(u;k) is a semiclassical Green func
tion, which may have different forms in the illuminated, pe
umbra, and shadow regions. As in Bogomolny’s theory@28#,
the direct zero-length trajectories corresponding tou50 are
excluded fromGsc(u;k) in Eq. ~32!, but Gsc(0;k) includes
the classical trajectory along the radial direction which
turns to (R,0) after bouncing off the inner circle. Note th
Tsc(u;k) requires information only about the classical traje
tories and diffractive paths.

As in the case of the exactT matrix, Eqs.~19! and ~20!,
we construct a finite approximation to the semiclassicaT
operator by dividing the Poincare´ surface of section intoN
cells of widthDu52p/N. The N distinct matrix elements
are

Tj~k!5T~u j ,u0 ;k!Du

52
i\2

m (
paths

~kRcosf j !Gsc~u j ;k!Du, ~33!

wheref j is the angle between the inward normal to the ou
circle and the particular classical or diffractive path involv
in going fromu050 to u j . Equations~24! and ~33! enable
us to calculate the energy eigenvalues using different se
classical approximations forGsc(u j ;k).

Figures 7–9 showuT(u;k)u for the same cases as the ea
lier plots of uG(u;k)u. As before, the solid bar under theu
axis indicates the extent of the penumbra in each case.
solid curves are the exact quantum-mechanical transfer
erator calculated from Eq.~21!, with gl(R,R;k) given by Eq.
~6!. The dotted curves correspond to Bogomolny’s semic
sical approximation. They were calculated from Eq.~32! by
replacing Gsc(u;k) by the semiclassical approximatio
G0
( i )(u;k) for the illuminated region, Eq.~29!, employed

from u50 to the angle at which the straight line joinin
(R,0) to (R,u) is tangent to the inner circle. Beyond th
angle the Green function was set equal to zero. This appr
mation is, in fact, exactly the same as that given by Eq.~1!,
e
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constructed using purely classical trajectories. Finally,
dashed curves in the figures were constructed from Eq.~32!
using the semiclassical approximations~29!–~31! for
G0
( i )(u;k), G0

(p)(u;k), andG0
(s)(u;k) in the three regions.

The most striking feature of Figs. 7–9 is the large osc
lations occurring in the illuminated region of each plo
These come from the interference between the two term
Eq. ~29!, the direct term and the reflected term. From E
~29! and ~32! the contribution to theT operator from the
direct path is

FIG. 7. uT(u;k)u as a function ofu, for a50.1R. The solid
curves are the exact transfer operator, calculated from Eq.~21!. The
dotted curves are the Bogomolny semiclassical approximation
explained in the text. The dashed curves are the semiclassica
proximation calculated from Eq.~32! using Eqs.~30! and ~31!,
which describe the diffractive paths in the penumbra and sha
regions. Upper plot: eigenvaluek59.936 calculated withN5250;
lower plot: eigenvaluek549.959 calculated withN5250.

FIG. 8. The same as Fig. 7 fora50.3R. Upper plot: eigenvalue
k59.939 calculated with N5200; lower plot: eigenvalue
k549.959 calculated withN5300.
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Td
~ i !~u;k!5

ei3p/4

2p1/2 @kRsin~u/2!#1/2exp@ i2kRsin~u/2!#.

~34!

In the upper part of Fig. 10, the real part of this expressio
plotted as a function ofu, for the case shown in the lowe
part of Fig. 9. One can see that the factor@sin(u/2)#1/2 causes
the amplitude of the oscillations to increase gradually au
goes from 0 tou ip , the penumbra boundary. Similarly, th
contribution to theT operator from the reflected path is,

Tr
~ i !~u;k!52

ei3p/4

2p1/2~kRcosa!1/2
~Rcosa2L2/2!1/2

~L2/2!1/2
eikL2,

~35!

FIG. 9. The same as Fig. 7 fora50.5R. Upper plot: eigenvalue
k510.189 calculated withN5250; lower plot: eigenvalue
k549.999 calculated withN5350.

FIG. 10. Comparison of the two terms contributing to the se
classical transfer operator in the illuminated region. The up
curve is the real part of the direct contribution given by Eq.~34!.
The lower curve is the real part of the reflected contribution giv
by Eq. ~35!.
iswhereL2/25@R21a222aRcos(u/2)#1/2. In Eq. ~35!, as in
Eq. ~29!, a is the angle between the inward normal to t
outer circle and the reflected path at (R,0) or (R,u); it is the
same as the anglef in Eq. ~32!. The real part of Eq.~35! is
plotted as a function ofu in the lower part of Fig. 10. The
amplitude factor in this expression is a maximum atu50
~wherea50), and steadily decreases asu goes from 0 to
u ip . Figure 10 makes it plausible that the eight oscillations
uT( i )(u;k)u in the lower part of Fig. 9 result from interferenc
between the 12 oscillations of the direct term and the f
oscillations of the reflected term in the illuminated regio
~Note that the jagged peaks and troughs in the upper pa
Fig. 10 are due to the limited number of points used to p
the curve.!

We have performed a similar comparison of the contrib
tions toTsc

(p)(u;k) in the penumbra, again for the case show
in the lower part of Fig. 9. The results are shown in Fig. 1
In the upper part of the figure, the dotted curve is the r
part of Eq.~32! coming from the first term of Eq.~30!. This
has the same form as Eq.~34! for the illuminated region,
multiplied by the Fresnel factor@F(`)2F(n)#/(2i )1/2. The
Fresnel factor causes the oscillations to decrease in am
tude asu goes through the penumbra fromu ip to ups. On the
same plot the dashed curve is the real part of Eq.~32! com-
ing from the second term of Eq.~30!, calculated with
cosf5Lr /R. It oscillates with constant amplitude and almos
constant wavelength.~The term6ag0 in the exponential
function, which goes smoothly from a negative to a posit
value asu increases through the penumbra, is small co
pared to 2Lr .) Close to the shadow boundary, the two co
tributions may be seen to be comparable in magnitude. In
lower part of Fig. 11 we have plotted the sum of these c
tributions toTsc

(p)(u;k).
There are other points of interest in Figs. 7–9. First, th

-
r

n

FIG. 11. Comparison of the two terms contributing to the sem
classical transfer operator in the penumbra. The dotted curve is
real part of the direct contribution, given by Eq.~34! multiplied by
the Fresnel factor. The dashed curve is the real part of the glan
contribution, given by Eq.~32! with the second term of~30! sub-
stituted forGsc(u;k). In the lower part of the figure, the solid curv
is the sum of these two contributions.
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5220 55N. C. SNAITH AND D. A. GOODINGS
is the obvious feature that, in the penumbra, the semiclas
approximation which properly describes diffractive effects
this region is close to the exact curves, particularly for
higher-k eigenvalues. In contrast, the dotted curves, cal
lated from Bogomolny’s semiclassical approximation, d
play a discontinuity at the angle of the geometrical shad
boundary. It is also noteworthy that in the illuminated regio
for anglesu up to about 1 rad, the amplitude of the oscill
tions of the semiclassical transfer operator is larger than
of the exact transfer operator, although the number of os
lations and the phases are in good agreement. Finally,
note that the exact transfer operator displays small osc
tions of relatively short wavelength, most clearly visible
Figs. 8 and 9. We attribute these to the cutoff in the sum o
l in Eq. ~21! at u l u5kR. We suspect these oscillations may
physical since the energy eigenvalues calculated from E
~20! and ~23! agree with the exact quantum energies to
significant figures, as was mentioned near the end of Sec

V. SEMICLASSICAL AND EXACT
ENERGY EIGENVALUES

It remains to present the results of calculations of
energy eigenvalues in the two different semiclassical
proximations described above, and compare them with
exact energy eigenvalues. As a standard for comparison
also give the energy eigenvalues calculated using the sim
Einstein-Brillouin-Keller quantization scheme.

In the discussion that follows it will be advantageous
usescaledenergiesẼ, such that the mean separation betwe
the quantum energy levels~taking degeneracies into accoun!
is unity. The scaled energies are defined to be

Ẽ5NTF~E!5
m~R22a2!

2\2 E2S m

2\2D 1/2~R1a!E1/2. ~36!

HereNTF(E) is the Thomas-Fermi approximation to the e
act staircase functionN(E), the number of quantum state
having energy less thanE. It was calculated by a metho
similar to that described in a well-known paper by Kac@40#.
The first term is determined by the area of the billiard d
main, while the second term depends on the length of
boundary~both circles!. The scaled quantum energy eige
valuesẼln , related to the unscaled energy eigenvaluesEln
by Eq. ~36!, have a mean separation of unity. In Fig. 12 t
solid curve is the staircase function constructed from the
act quantum energy eigenvalues up toE5200, taking degen-
eracies into account. The dashed line, which is a plot
NTF(E) given by Eq.~36!, is clearly an excellent approxima
tion to N(E) over this energy range.

The results for the scaled energy eigenvalues, calcul
by means of Eqs.~24!, ~33!, and ~36!, are shown in Tables
I–III, which list the first 30 distinct energy levels for th
casesa50.1R, a50.3R, anda50.5R, respectively. The re-
sults in columns 4, 5, and 6 of the tables were calcula
from Eq.~24!, with N chosen to be 100. Since the eigenval
curve l0(k) for l50 is nondegenerate, while forlÞ0 the
curvesl l(k) and l2 l(k) are degenerate, only the distin
eigenvalues corresponding tol50,1,2, . . . are listed in the
tables. The first column gives thel value of the curve
l l(k), and the second column gives thecrossing number,
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FIG. 12. Comparison of the exact staircase functionN(E) ~solid
curve! with the Thomas-Fermi approximationNTF(E) ~dashed
curve! given by Eq.~36!.

TABLE I. Comparison of the semiclassical scaled energy eig
values, in three different approximations, with the exact scaled
ergy eigenvalues. Casea50.1R.

l n Ẽln
sc,EBK Ẽln

sc,Bog Ẽln
sc,diff Ẽln

exact

0 1 1.096 0.633 0.966 0.895
1 1 1.477 1.690 1.916 1.676
2 1 3.633 3.760 3.858 3.717
3 1 6.475 6.350 6.606 6.567
0 2 8.223 9.432 7.988 7.867
1 2 8.269 9.128 9.674 9.268
4 1 9.965 9.620 10.083 10.078
2 2 12.844 13.260 13.439 13.052
5 1 14.083 13.802 14.241 14.218
3 2 18.143 18.154 18.398 18.226
6 1 18.811 18.874 19.088 18.970
0 3 21.382 23.803 21.650 20.946
1 3 23.788 22.123 23.023 22.681
4 2 24.136 23.588 24.276 24.216
7 1 24.139 24.715 24.491 24.322
2 3 26.966 27.963 28.263 27.648
8 1 30.058 31.089 30.438 30.266
5 2 30.805 29.962 30.858 30.894
3 3 34.702 35.044 35.279 34.853
9 1 36.561 37.538 36.946 36.794
6 2 38.134 37.398 38.187 38.231
0 4 40.572 43.358 41.843 40.089
1 4 42.944 40.856 42.116 42.022
4 3 43.151 42.672 43.458 43.229
10 1 43.641 43.822 44.007 43.900
7 2 46.109 45.793 46.280 46.217
2 4 45.985 47.999 48.456 47.741
11 1 51.294 50.991 51.581 51.579
5 3 52.297 51.151 52.400 52.373
8 2 54.721 55.001 55.014 54.839

0.508 0.991 0.425
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55 5221SEMICLASSICAL APPROXIMATIONS TO DIFFRACTIVE . . .
i.e., the count for the number of times the curvel l(k) has
crossed the real axis at11, as illustrated in Fig. 1. Column
4 lists the scaled energy eigenvalues calculated in Bogom
ny’s semiclassical approximation, described above. The
column lists the semiclassical scaled energy eigenvalues
culated including diffractive paths in the penumbra a
shadow regions. Finally, column 6 gives the exact quantu
mechanical scaled energies calculated from Eqs.~20! and
~24!. At the bottom of columns 4 and 5 we give the roo
mean-square~rms! deviation of the scaled semiclassical e
ergy eigenvalues listed in that column from the exact sca
energies. These numbers reflect what is clearly evident in
tables, namely, that in comparison with Bogomolny’s sem
classical approximation, the inclusion of diffractive effec
brings the energy eigenvalues into much better agreem
with the exact energies. In fact, the rms deviation is redu
by almost 60% in each case.

In judging the relative merit of the two semiclassical a
proximations described above, it is helpful to compare th
with a much simpler semiclassical approximation, name
the Einstein-Brillouin-Keller ~EBK! quantization scheme
~See, for example, Ref.@2#, p. 214.! The EBK energy eigen-
values for the annulus billiard are obtained by quantizing
two independent action integrals,

TABLE II. The same as Table I for the casea50.3R.

l n Ẽln
sc,EBK Ẽln

sc,Bog Ẽln
sc,diff Ẽln

exact

0 1 1.665 2.480 1.915 1.561
1 1 2.205 1.923 2.153 1.979
2 1 2.603 3.265 3.327 3.252
3 1 5.035 4.935 5.470 5.372
4 1 8.069 7.866 8.293 8.265
5 1 11.683 11.613 11.859 11.834
0 2 12.495 12.864 13.083 12.347
1 2 13.137 13.944 13.355 12.939
2 2 15.128 15.191 14.935 14.727
6 1 15.861 15.685 16.035 16.011
3 2 15.269 17.357 17.885 17.730
7 1 20.593 20.179 20.805 20.758
4 2 20.590 21.106 22.054 21.921
8 1 25.869 25.658 26.204 26.055
5 2 26.536 26.789 27.337 27.202
9 1 31.683 31.938 32.072 31.892
0 3 32.489 31.110 32.635 32.326
1 3 33.169 34.115 33.681 32.980
6 2 33.092 33.130 33.529 33.423
2 3 35.235 36.087 35.760 34.951
10 1 38.029 38.484 38.500 38.261
3 3 38.770 39.976 38.604 38.270
7 2 40.245 39.619 40.439 40.432
4 3 43.953 41.987 43.199 42.967
11 1 44.903 45.238 45.400 45.159
8 2 47.985 47.020 48.135 48.122
5 3 45.805 48.110 49.163 49.045
12 1 52.300 52.945 52.721 52.580
9 2 56.305 55.632 56.491 56.430
6 3 54.651 56.145 56.688 56.447

0.908 0.730 0.299
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pudu52pL5 lh, l50,1,2,. . . , ~37!

whereL is the constant classical angular momentum, and

Sr5 R prdr52E
rmin

R

~2mE2 l 2\2/r 2!1/2dr

5~n211b/4!h, n51,2, . . . . ~38!

The lower limit of this radial integral is either the classic
turning pointr 15 l\/(2mE)1/2, or the radiusa of the inner
circle of the annulus, whichever is larger. Whenr 1.a, the
value ofb is 3, corresponding to a ‘‘soft’’ turnaround cause
by thel 2\2/r 2 potential. On the other hand, whenr 1<a, the
value ofb is 4, since in this case the particle makes a ha
wall collision with the inner circle of the annulus. Note th
the integer on the right-hand side of Eq.~38! has been writ-
ten asn21, with n51,2, . . . , in order thatn will corre-
spond to the crossing number defined above. Working
the integral in Eq.~38! for given l andn leads to an equation

TABLE III. The same as Table I for the casea50.5R.

l n Ẽln
sc,EBK Ẽln

sc,Bog Ẽln
sc,diff Ẽln

exact

0 1 2.690 2.943 3.060 2.630
1 1 2.947 3.360 3.228 2.869
2 1 3.744 4.424 3.738 3.595
3 1 5.143 4.590 5.048 4.835
4 1 5.032 6.587 6.784 6.613
5 1 7.757 8.416 9.060 8.943
6 1 10.951 11.464 11.915 11.823
7 1 14.604 14.837 15.283 15.243
8 1 18.709 18.485 19.164 19.186
0 2 20.184 21.514 20.346 20.107
1 2 20.500 20.275 20.715 20.416
2 2 21.451 21.124 21.849 21.345
3 2 23.050 23.921 23.706 22.904
9 1 23.259 23.192 23.515 23.630
4 2 25.318 26.349 25.789 25.103
5 2 28.282 29.769 28.391 27.956
10 1 28.249 27.873 28.478 28.558
6 2 31.979 31.820 31.663 31.476
11 1 33.676 33.173 33.892 33.952
7 2 36.458 35.777 35.867 35.672
12 1 39.535 39.319 39.788 39.800
8 2 41.791 39.803 40.833 40.549
13 1 45.823 45.296 46.067 46.090
9 2 42.714 45.237 46.363 46.102
10 2 49.787 51.756 52.527 52.322
0 3 52.483 51.527 52.988 52.400
1 3 52.818 53.368 53.052 52.732
14 1 52.538 52.174 52.898 52.815
2 3 53.826 54.517 53.952 53.729
3 3 55.510 56.164 55.748 55.396

0.940 0.747 0.319
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5222 55N. C. SNAITH AND D. A. GOODINGS
for Eln which can be solved by an iterative procedure, sta
ing from a good estimate forEln . The solution is the EBK
energy eigenvalue. The scaled energy eigenvalues calcu
in this way are given in column 3 of the tables.

At the bottom of column 3 is the rms deviation of th
scaled EBK energy eigenvalues from the exact scaled en
eigenvalues. For the casea50.1R, the rms deviation for the
EBK eigenvalues is about half that obtained from Bogom
ny’s semiclassical approximation. However, for the oth
two cases, the rms deviation for the EBK eigenvalues
larger than the Bogomolny results. Thus the EBK quanti
tion scheme appears to give good results when the radiu
the inner circle of the annulus is small, but not very go
results when it is larger. Roughly speaking, however,
EBK and Bogomolny semiclassical approximations are
comparable accuracy for the annulus billiard. In comparis
to these, the results calculated with the inclusion of diffra
tive effects are significantly better.

FIG. 13. Deviations of the scaled semiclassical energy eigen
ues from the exact scaled energy eigenvalues,Ẽln

sc2Eln
exact, plotted

against the scaled energyẼ. Dotted circles joined by dotted lines
EBK approximation. Crosses joined by dashed lines: Bogomoln
approximation. Solid circles joined by solid lines: approximati
including diffractive effects. System witha50.1R.

FIG. 14. The same as Fig. 13 for the system witha50.3R.
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Finally, the deviations of the semiclassical scaled ene
eigenvalues from the exact scaled energy eigenval
Ẽln
sc2Ẽln

exact, are plotted against the scaled energyẼ in Figs.
13–15, for the first 30 distinct energy levels. The figures
for the three casesa50.1R, 0.3R, and 0.5R, respectively. In
each figure, the dotted circles~joined by dotted straight lines!
show the deviations of the EBK eigenvalues, the cros
~joined by dashed lines! are the deviations of the Bogomoln
eigenvalues, and the solid circles~joined by solid lines! are
the deviations of the eigenvalues calculated with diffract
corrections. The plots show quite clearly that the deviatio
are smallest, on average, when diffractive corrections are
cluded. Apart from that observation, which is consistent w
the rms deviations given in the tables, the only pattern t
we have found is that the three large positive peaks in F
13, belonging to the Bogomolny approximation, correspo
to the energy eigenvalues (l50, n52), (l50, n53), and
( l50, n54).

VI. CONCLUSION

In this paper we have reported the results of a study
diffractive effects in a simple two-dimensional system, t
annulus billiard. Starting from the boundary integral metho
we obtained the exact quantum-mechanical transfer oper
and two different semiclassical approximations of it. T
simplest semiclassical approximation, formulated by Bog
molny @28#, is constructed from purely classical~Newtonian!
trajectories. To go beyond this, one must include the w
character of the quantum particle in some approximate w
Our studies of the annulus billiard, together with those
Primacket al. @27# on the Sinai billiard, show that the mos
important diffractive effects associated with a disk com
from paths which lie in the penumbra, the region situated
both sides of the geometrical shadow boundary. By empl
ing an expansion of the Green function appropriate for t
region, we find that both the Green function and the trans
operator are brought into much better agreement with th
exact quantum counterparts. Moreover, the correspond
semiclassical energy eigenvalues are much closer to the
act quantum energies, the rms deviation over the lowes

l-

’s

FIG. 15. The same as Fig. 13 for the system witha50.5R.
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distinct eigenvalues being reduced by more than a facto
2.

An advantage of the semiclassical approach is that
contrast to the exact quantum-mechanical formulation, it
ables one to interpret various features of the transfer op
tor. The large oscillations in the illuminated region in Fig
7–9 have been identified as resulting from interference
tween the classical direct path and the path reflected from
inner circle ~Fig. 10!. Likewise, the steady decrease
uT(p)(u;k)u through the penumbra results from the Fres
factor which almost completely turns off the direct contrib
tion asu goes fromu ip to ups. In a representative case, w
have found that the direct contribution~containing the
Fresnel factor! and the glancing contribution are of comp
rable size near the shadow boundary~Fig. 11!. Finally, when
a shadow region exists as in Fig. 9, the contribution to
transfer operator in this region is barely visible on the plo

As a last observation we note, from Eqs.~29!–~31! and
Eq. ~32!, that the contributions to the transfer operator in t
three regions are all of the same order in\, namely,\0.
However, if we consider the dependence on the wave ve
k, it is evident that the contributions to theT operator from
the illuminated region and the direct term of Eq.~30! for the
penumbra vary ask1/2, whereas the contribution to Eq.~30!
from the paths depicted in Fig. 2 and the shadow contri
tion based on Eq.~31! vary ask1/3. Because of this smal
difference, the former contributions will become relative
more important ask increases.
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APPENDIX: BOUNDARY POINTS
BETWEEN THE REGIONS

In this appendix we describe how the boundary points
the three regions in Fig. 1 are determined. In what follow
cs
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the angleu5u j2u0 is taken to be less thanp.
In the illuminated region, the Hankel functionsHl

6(kR)
andHl

6(ka) in Eq. ~26! were approximated by the Deby
asymptotic expansions@Ref. @38#, Eq. ~A.16!#. These expan-
sions forHl

6(x) are valid for complexl in the neighborhood
of the positive real axis provided 0,Re$ l %,x. The expan-
sions fail for the reflected contribution to Eq.~29! when
u l2kau'(ka)1/3, i.e., whenkRcos(u/2)2ka'(ka)1/3. This
sets the maximum permissible value ofu for the illuminated
region at@27,39#

u i ,max52 cos21S ka1~ka!1/3

kR D . ~A1!

The condition for the validity of the approximations in th
penumbra region, leading to Eq.~30!, is @38,39#

ucos21~a/R!2u/2u,~ka!21/3. ~A2!

Hence the penumbra region extends fromup,min to up,max,
where

up,min52 cos21~a/R!22~ka!21/3, ~A3!

up,max52 cos21~a/R!12~ka!21/3. ~A4!

Calculations show that~whenka.1) u i ,max.up,min , imply-
ing that the illuminated region overlaps the penumbra. I
natural, therefore, to choose the boundary between the
regions to beu ip5

1
2(u i ,max1up,min), which yields Eq.~27!.

If Eq. ~A4! yields a value forup,max greater thanp, there
is no shadow region. However, when a shadow region ex
and the summation in Eq.~31! is performed over the first few
zeros ofHl

1(ka), the contribution from further zeros may b
neglected provided@Ref. @38#, Eq. ~5.10!# g0.(ka)21/3,
whereg0 is thecreeping anglesimilar to that shown in the
lower part of Fig. 3. Sinceu52 cos21(a/R)1g0, themini-
mumpermissible value ofu in the shadow region is

us,min52 cos21~a/R!1~ka!21/3, ~A5!

which is less thanup,max. Therefore, the boundary betwee
the penumbra and the shadow region will be taken to
ups5

1
2(up,max1us,min), which gives Eq.~28!.
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