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Semiclassical approximations to diffractive effects in the annulus billiard
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The semiclassical theory formulated by Bogomdlgy B. Bogomolny, Nonlinearitp, 805(1992] employs
a transfer operator constructed from classical trajectories that connect points on a suitably chosen Poincare
surface of section. In this paper we study the two-dimensional annulus billiard, and modify Bogomolny’s
transfer operator to include diffractive paths. The penumbra contributidnBrimacket al, Phys. Rev. Lett.
76, 1615(1996], which correspond to diffractive paths passing close to the inner circle of the annulus, are
found to account for most of the difference between the exact transfer operator and Bogomolny’s semiclassical
transfer operator. When these diffractive effects are included, the semiclassical energy eigenvalues are brought
much closer to the exact quantum energy eigenval@k063-651X97)07005-0

PACS numbeps): 05.45+b, 03.65.Sq

[. INTRODUCTION paths passing through the vertex of a triar{dlg], the vertex
of a hyperbola in the limit that it has narrowed down to a

Semiclassical approximations to quantum mechanics ofstraight line[19], either of the vertices of two wedges whose
ten provide insights into the behavior of physical systemspisectors lie on a common axjg0], and the vertex of the
that are not obtained by simply solving the Salirger cardioid billiard[21]. Diffractive effects also occur when the
equation with appropriate boundary conditions. For nonintesystem encloses a point scattef2g], small circular disks
grable systems the Gutzwiller trace formyih2] and the [23], or a singular magnetic flux lin24—24. Still another
closely related dynamical function[3,4] give a semiclassi- diffractive effect—the one treated in this paper—occurs un-
cal description based on the periodic orbits of the classicafler grazing conditions in which some classical trajectories
system. Knowing the classical action, the Maslov index, andire reflected from a smooth surface while close parallel ones
the stability index of the shortest periodic orbits of a givenare not. In a recent study of the Sinai billiard, Primatial.
system, one can use systematic expansions of the dynamid&7] derived important diffractive corrections to the semi-
¢ function [5—7] to obtain a good approximation to the en- classical density of stategand its Fourier transformby
ergy eigenvalues of the quantum system. A comparison omodifying the propagator for paths in the vicinity of the
several methods employing periodic orbit theory has beeiangent to the circular disk. With the exception of ReR],
given for the wedge billiard for angles corresponding to harcgll of these studies have been carried out in the framework of
chaos[8]. periodic orbit theory.

The trace formula and the dynamicalfunction may be A different semiclassical theory, not depending on the
regarded as the leading approximation of an expansion iperiodic orbits of the system, has been developed by Bogo-
powers of Planck’s constaf@—11. It would appear thatitis molny[28,29. The theory is formulated in terms of a trans-
very difficult to calculate exactly the correction terms corre-fer operator and a suitably defined Poincatgface of sec-
sponding to the next power df in the expansion. However, tion (PSS in configuration space. For a system with two
there are many systems in which an important correction téreedoms, the PSS is simply a one-dimensional curve, usu-
standard periodic orbit theory—not necessarily of higher orally taken to be the boundary in billiard systems. For two
der inz—can be obtained by treating diffractive effects in freedoms the transfer operator has the form
the spirit of the geometric theory of diffractiof12,13.

Wirzba and co-workerd14—17 extended periodic orbit rqE)=Y 1 7°S(q",q';E) |12

theory to include periodic orbits containintiffractive paths T(a"q ’E)_cm (2@in)Y?|  9q"dq’

i.e., segments in which the wave nature of the particle is of

prime importance. They successfully applied their approach xexdis(q",q";E)/fi—ivm/2], (1)

to calculating the scattering resonances of two-disk and

three-disk systems in two dimensions. whereq’ andqg” are points located on the PSS. The summa-

The diffractive paths may have various forms. In one kindtion is over all classical trajectories which cross the PSS only
the particle wave creeps along a smooth arc of a curvednce in going frong’ to q” and have the normal component
surface, radiating at each point along the creeping itk  of the momentum in the same direction gt and g”. For
17]. In another, it propagates to and from a vertex—a poineach such trajectory one needs the action at enErgge-
on the boundary of the system at which the direction of thenoted byS(q”,q’;E), and the phase index which is related
tangent changes discontinuously. Examples of this type ar® the number of points on the trajectory at which the semi-

classical approximation is not valid.
A finite approximation to the transfer operator in coordi-
*Present address: School of Mathematics, University of Bristolnate space can be constructed by dividing the accessible part
Bristol BS8 1TW, England. of the PSS intaN cells, thenth cell centered omy,, having
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width A,,. In terms of the transfer operatdr(q.,,qd,;E) [l. EXACT GREEN FUNCTION AND TRANSFER
from g, in cell m to g, in cell n, the matrix element OPERATOR FOR THE ANNULUS BILLIARD

Tmn(E) is defined to be The annulus billiard consists of a particle confined to the

region between two concentric circles of ragdiandR, with
a<R. Since the potential is zero in the annular region, the
Green function for the quantum system satisfies the equation

Tmn(E):T(Qmaqn;E)(AmAn)l/Z- (2)

Then the condition for an energy eigenvalue is that
ﬁZ ﬁ2k2
def Smn—Trmn(E)]1=0. 3) — 5 ViGN k) = = =G(rr'ik)==a(r=r’). (4

We note that this equation will be satisfied whenever one offhe energy E of the particle has been written as
the eigenvalues of th& matrix is equal to unity. Bogomol-  #2k?/(2m), wheref:k is the magnitude of the linear momen-
ny’'s theory offers an appealing alternative to periodic orbittum andm is the mass of the particle. Representindpy
theory, for both integrable and nonintegrable systemgr ¢) andr’ by (r’,6’), one can show that the solution of
[30,31. Its main advantage is that, instead of having to findgq. (4) which is zero on the circle of radius and has the

systematically the periodic orbits of a given system and calform of an outgoing wave in the annular region 28,27
culate their properties, one has to calculate only the action,

its second derivative, and the phase index for classical tra- il
jectories connecting points on the PSS. Furthermore, it has G(r,r’;k)= 2 g(r,r’;kexdil(6'—0)], (5
been found that the resulting semiclassical energy eigenval- 1=
ues converge to definite values as the cell sizghiase space im
(constructed using the coordinate on the PSS together wit M= — — [H-~ + +
its conjugate momentuyrapproaches roughliy/10 [30]. B|(r,r k) 4ﬁ2[H' (kr o)+ StkapH(kr o) JAy (kr),
The question we set out to investigate is how to modify (6)
Bogomolny’s theory to include diffractive paths, such as oc- . ,
cur in the geometric theory of diffractidi 2,13, in addition wherer . is t_he Iesse+r and.. trle greater Ot andr’, and
to the purely classical trajectories required by Eg. In this S'(ka):_H'_(ka)/H'_(ka)'. H (x) and H, (X). are the
paper we shall describe how this can be done for a simpl"e"ank.el functlgns defined in terms of the ordinary Bessel
system, the annulus billiard. If the outer circle of the annulugunctions asH™(x) =J;(x) £iY(x).
is chosen to be the Poincasarface of section in configura- W& now apply the boundary integral meth82—-34 to
tion space, one might expect that diffraction will be impor-the outer circle of radiuR, regarded as the boundaB.
tant for paths that pass close to the inner circle of the anndmposing the condition that the wave functigrfr) is zero
lus. As mentioned above, such paths have been shown 0 B, one finds that when andr’ lie on the boundary,
Primacket al.[27] to be very important for the Sinai billiard, ,
which differs from the annulus billiard only in having a éG(r,r’;k)(w(r )dlr:0, @)
square outer boundary instead of a circular one. B Ny
An attractive feature of the annulus billiard is the fact that
the circular symmetry makes it possible to obtain the energyheredy(r')/dn,, is the normal derivative at’, anddl|’ is
eigenvalues of the system by a simple procedure. This ergn infinitesimal increment along the boundary. This is the
ables us to calculate the energy eigenvalues using differeondition that must be satisfied whéncorresponds to an
semiclassical approximations. We are particularly intereste@nergy eigenvalue of the Scliiager equation for the par-
in seeing how the results calculated from Bogomolny’sticle.
transfer operator constructed from purely classical trajecto- Equation(7) can be solved by dividing the boundaBy
ries compare with the results obtained with the inclusion ofinto N cells of widthA=27R/N, with centers at positions
diffractive paths. rr=(R,6), i=01,...N-1 (ry=ro)- Denoting
In Sec. Il we describe the exact Green function for the d¢(r’)/dn,/]A at positionr; by A;, we obtain
gquantum system, and show how to construct the correspond-
ing transfer operator and its eigenvalue cur@sa function .
of the energy. Section Il describes semiclassical approxi- ]240 G(6;,6;;k)A;=0, i=01,... N-1. ®)
mations to the exact Green function in three different
regions—the illuminated region, the penumbra, and thex nontrivial solution exists when
shadow region. In Sec. IV, the semiclassical transfer opera-
tor, modified to include diffractive paths, is shown in the defG(#6;,0;;k)]=0. 9)
three different regions and compared with the exact
qguantum-mechanical transfer operator. The correspondingowever, this equation cannot be used as it stands because
semiclassical energy eigenvalues, with and without diffracthe diagonal elementgor which r=r’) are infinite.
tive corrections, are calculated and compared with the exact Because of the circular symmetry of the annulus, we need
energies in Sec. V. As a standard for comparison, we alsonly consider theN distinct elementsG(6y, 6;;k) with
give the energy eigenvalues calculated by the simpled;=j(27/N). Despite the singularity at=0, it is instruc-
Einstein-Brillouin-Keller(EBK) quantization procedure. Our tive to calculate|G(6,,6;;k)| as a function of the angle
main findings are summarized in Sec. VI. 0;— 6o. This is accomplished by settingj — 6= 6, — 6,, and

N—-1
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r=r'=Rin Egs.(5) and(6). For simplicity we shall hence-

forth denoted; — 6, by 6 and the corresponding Green func- 1

tion by G(#6;k). Calculations oflG(6;k)| as a function of

o0 for two different values ok are shown as the solid curves

in Figs. 4—6.(The values ok were chosen to bk eigenval- 0.5 -

ues close to 10 and 50, in each case. However, there is no

visible change in any of the plotted curves in the figures if

k is taken to be exactly 10 or 50, i.e., not corresponding to a

k eigenvalue. We shall refer to these curves as the exact

Green function since they were calculated from the exact -05 |-

solution of Eq.(4) given by Eqs(5) and(6). Note that since

|G(—6;k)|=|G(8;k)|, we have plottedG(8;k)| only for

6 in the range between 0 antl -1
The problem of the singular elemer@ 6, 6,;K) in Eq. ‘ ‘ ' ‘

(9) can be dealt with by the following procedur28], which -1 =05 0 05 1

leads to Bogomolny’s transfer operator. First we construct Re[A(k)]

the matrix representation of the Green functi@(6, 6’ ;k)

forr=(R,6) andr’=(R,#’) in the set of orthonormal basis FIG. 1. A typical plot of\;(k) in the complex plane.

functions{exp(l 6)/\/27}:

Im[x(k)]

By solving the Schrdinger equation for the annulus with

1 (2= 2m i Dirichlet boundary conditions on both circles, one can show

Gy (k)= ZJO dafo do’explil 6)G(6,0';k) that Eq.(16) is the condition for an exact energy eigenvalue.
For each value of there is an infinite number of distinkt
xXexp(—il'8g"). (10)  values satisfying Eq(15) or (16). (We shall refer toenergy

eigenvaluesand k eigenvaluesnterchangeably in what fol-
From the correct form fo5( 6,0’ ;k) when 6’ is very close lows)

to 6 [35,28, one can show that, whe®— 0’| <1, Condition(12) for ak eigenvalue may also be written as
im 1 def 8, — T, (k :0, T, (k)= —E—: (K)+ 6 1y
G||’(k):_?(k2R2_ 2)125”,, (11) [ 1 I ( )] I} ( ) 1 ( ) 1 (17)

which is singular wher|l|=kR. [If, for the moment, we Where the matrixT. (k) is the quantum-mechanical version

think of | as a continuous variable representing the classic®f Bogomolny’s transfer operatf28] in thel representation.
angular momentuniin units of %), it is easy to see that the Since theT operator is diagonal in this representation, its
maximum value of/l| is kR.] Following Bogomolny[28],  eigenvalues as a function &fare, from Eqgs(14) and(17),

we now modify the condition dg6,. (k) ]=0 for ak eigen-

2mih?
value to )\I(k):_ 7Tn|1 (k2R2—|2)1/2g|(R,R;k)+1
defGy/(k)]=0, Gy, (K)=c,c;/Gy(K), (12

= Z(RR2=12)Y7[H}" (KRJH[ (ka)
where the constants andc,, are given by 2 ! !

h 2p2_ [2\1/4 n _ H,"(kR)
CI___im(k Re—14)*~. (13 H,"(ka)H, (kR)]Hﬁ(ka) +1, (18
Substituting Eqgs(5) and (6) in Eq. (10), one finds that the for I=0,£1,%2,... . Anenergy eigenvalue of the Schro
matrix G, (k) is diagonal: dinger equation occurs whenevex,(k)=1. (Clearly,
N (K)=N\,(k), implying that the eigenvalue curves are dou-
_ 2mih? bly degenerate, except whés 0.) A typical plot of \(k) in
Gyr(k)=—— (KPRZ=19)Y7(R,RiK) 8, [I|<kR. the complex plane is shown in Fig. 1. The curve starts out at

(14) +1 whenk=I/R, and, after an “initial transient,” moves
onto the unit circle. Ask continues to increase, it winds

From Eq.(12), ak eigenvalue occurs whenevany of these ~ around the unit circle in a counterclockwise direction, yield-
diagonal elements is equal to zero. Thus, from &), a k ing ak-eigenvalue each time it crosses the real axis-at
eigenva|ue of the Schdinger equation occurs when Similar p|OtS of T-matrix eigenvalue curves have been given
previously by Haggerty31], Lefebvre[36], and Rouvinez
H"(KR)H[ (ka)—H," (ka)H; (kR)=0, (15  and Smilansky37].
For comparison with the semiclassical approximations to
or when the transfer operator to be described later in the paper, we
require matrix elements df in the 6 representation. As be-
Ji(ka)Y,(kR)—Y,(ka)J;(kR)=0. (16)  fore, the PSSthe outer circlg is divided intoN cells of
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width A9=2=/N, with centers at positions;=(R,¥6)), by Eg. (18). Thus it is appropriate to label the eigenvalue

i=0,1,...,N—1. In the # representation, the matrix ele- CUrves byl and write Eq.(23) as
ment connecting cells andj is N—1
L = = | )\,(k)=)\,|(k)=j20 T,(k)expil 6), 1=01,...,
T(6000=5" 2 X eqtil’ )T (k) (24)
xexp(—il ;)A 6. (199  WhereT;(k) is given by Eq.(20) with A#=27/N.
Because of the circular symmetry, there are dxlylistinct IIl. SEMICLASSICAL APPROXIMATIONS
matrix elementsT;(k)=T(#6;,0;k), obtained by putting OF THE GREEN FUNCTION
0;=0, 0;=j(2m/N). SinceT.(k) is diagonal, from Egs. ] . o
(14), (17), and(19), we find Up to this point we have been considering the exact
guantum-mechanical Green function, E¢s). and (6). Our
1 KR 2mih2 main interest is in exploring what happens when this exact
T(=5— > |- (K®’R?>—=12)Y2g,(R,R:k) +1 Green function is replaced by semiclassical Green functions
27 1==kr m . . . . . .
corresponding to different approximations. The semiclassical
X exp(—il 6,)A 6. (200  approximations described below are similar in many respects

to those obtained by Primackt al. [27] in their study of
Note that the sum ovedrhas been restricted to integers in the diffractive effects in the Sinai billiard. They are based on the
range between-kR andkR in order thatk?’R?>—12 be posi- mathematical expansions described in great detail by Nus-

tive. From Eqgs(2) and(20), we can deduce the exact trans- senzveig38].
fer operator in the form of Eql): To obtain the semiclassical approximations, we first use
the Poisson summation formula to rewrite E¢S. and (6)

kR 222 : : ’
27tk (with @ now denotingd’ — ) as[27]
. - _ 2p2_12\1/2
Texacl 6:K) 27 2n —— (KR=1%) . |
im (=
G(r,r’;k= > _Wf dI[H, (kro)
X g, (R,R;k)+1 |exp(—il 6), (21 M=== -
+S(ka)H,"(kr)JH" (kr-)
where0=6"—6'|. Lo

The transfer matrixt (6, 6; ;k) has the circulant form xexp(il 6+i2mMl), (29
To Ti Tnoo Taew where, as beforeS(ka)=—H, (ka)/H, (ka). Following

Primacket al. [27] we consider only the teri =0 in the
summation oveM, which they found to make the dominant

TN—l TO' o TN—3 TN—Z
: i : , (22)  contribution in their study of the Sinai billiard. In what fol-

T Taee T T lows we requireG( 6y, 0; ;k) with r _=r- =R. Denoting the
2 3 0 ! contribution to the Green function from the tefsh=0 by
Ty Taoo Tz To Go(6;k), whered= 6, 6,, we have,

in which the matrix elements; are given by Eq(20). Fol- im (e
lowing Lefebvre[36], we make use of the fact that the ei- Go(0;k)=— WJ dI[H; (kR)+S/(ka)H," (kR)]
genvalues of such a matrix can be expressed in the simple -
form X H;" (kR)ex(il 6). (26)
N—1
- , P _ Relative to the positior#=0, the outer circle of the an-
Mn(k)= JZ Titkexp(i2amjn/N), - n=1,... N. nulus is divided into three regions: the illuminated region,
(23)  the penumbra, and the shadow regisee Fig. 2 From the
. symmetry of Fig. 2, it suffices to consider to be in the
As shown above, ak eigenvalue occurs whenever jnterval (Ogr). In the Appendix we use the conditions on the
An(k)=1. Note also thath_n(k)=An(k), since T_j(k)  yalidity of the approximations in the different regions to de-
=T;(k). termine the boundary points. The boundary point between

Equation(23) enables us to calculate theeigenvalues to  the jlluminated region and the penumbra is found to be
high accuracy. In fact, wittN chosen to be 100, the results

based on Eq(23) were found to agree with the results ob- .,
tained from Eq(16) to six significant figuresfor the lowest ~ fip=COS
15 distinct eigenvaluesThis is not entirely surprising since

if we substituteT;(k) given by Eq.(20) in Eq. (23), with  while the point separating the penumbra from the shadow
0;=j(2m/N), replace the sum over by an integral over region is

0, and wuse the orthonormality of the functions

{exp(l 6)/(2m)Y3, we find that\ (k) is equal to\,(k) given fps=2c0s *(a/R) +(3/2)(ka) 2. (28)

ka+ (ka)Y?

- _ —1
R +cos Y(a/R)—(ka) %73, (27
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FIG. 2. The annulus billiard showing the illuminated, penumbra,  FIG. 3. Two diffractive paths in the penumbra region of the
and shadow regions relative 83=0. The direct and reflected paths annulus billiard. In the upper situation, the effective length of the
from 6, to 6; are shown in the illuminated regio#, is the bound-  diffractive path is 2., —avy,. In the lower case it is 2, + ay,.
ary between the illuminated region and the penumisga.is the
boundary between the penumbra and the shadow region. and lower cases shown in Fig. 3, respectively. In the upper

case, the path length appearing in the exponential is short-

When the angld lies in the illuminated region, the lead- gped by the arc lengthy, between the points of tangency.
ing terms resulting from Nussenzveig's analysis are, foliy the Jower case, the path length includes the distange
0<0;p, that the diffracted ray creeps along the surface of the disk.
Equation(30), which we have derived independentBg], is

€ __® exactly the same as the result obtained by Primethl.
(kL™ (kLp)'? [27].
Finally, when# lies in the shadow region, Nussenzveig’s
(29 analysis leads to the following form for the Green function,
for =< o<

e ™4m ikLy ikLy

GY(0:K) =~ 5Tz

Rcosy— L,/2\ 12
Rcosy '
where L, is the length of the direct path fromR(0) to e ™3m

k2R2_|2 —-1/2
(R,0), andL, is the length of the path reflected from the G (6;k)=— 577 (ka/2)13>] (A,—n)z
inner circle, as shown in Fig. 2. In EQ9), « is the angle ™ m[AT(=X)]

between the reflected ray and the inward normalR0) or ; 2p2_12\112
xexpli[2(k*R*—1%)

(R,6). One can see that when the reflected path becomes

tangent to the inner circle, the square-root factor involving —2l,cos }(1,/kR)+1,6]}, (31

a goes to zero. Note that the negative sign preceding the
second term in Eq29) can be interpreted as resulting from where —x,, is the nth zero of the Airy function Aif-x),

a phase change af on reflection from the inner circle. Ai’(—x,) is the derivative of the Airy function at x,,, and
When 6 lies in the penumbra, the leading terms in the| =ka+ (ka/2)3,e'™. Although this expression looks
expansions yield the result, fak,=< 6< 6, complicated, one can show that the real part of the

s L exponent of the exponential function is equal to
GP(6:K) = — e™m | e F(»)—F(v) —(V/312) (ka/2)¥3yox,, where y,=6—2 cos (a/R) is the
oA 2m¥2 (k)Y? (201 creeping angle, similar tay, in the lower part of Fig. 2.
(ka)¥C (Since X, IS positive and increases as increas)es
- N X;=2.338,x,=4.088,x3=5.521, ..., x;g=12.829...),
* 2mkL, exik(zL =ayo)l, (30 the contributions to the sum ovarin Eq. (31) will decrease

fairly rapidly as long asKa)*3y, is greater than unity. Thus
where F(v)=[¢{expim/2)dr and v=(kL/m)Y¥{sin" & the conditiony,>(ka) 3 will be assumed to hold in the
R) — (7/2— 60/2)]. According to Nussenzveif38] and Pri- shadow region, as stated in the Appendix. Then the sum in
mack etal. [27], the constant C has the value Eg.(31) can be limited to the first few poles &(ka) near-
C=0.996 15exqe/3). The first term in Eq(30), which is  est the real axis in the compldxplane. Equation(31) is
the contribution from the direct path of lendth is the same essentially the same as the contributions from creeping
as the first term of Eq.29) multiplied by theFresnel factor waves described by Vattay, Wirzba, and Rosend\iét.
[F()—F(»)]/(2i)*2 This factor varies smoothly between  In addition to the path we have just described, there are
0 and 1, tending to unity a8 approaches the border of the other diffractive paths containing longer creeping arcs which
illuminated region, and tending to zero 8sapproaches the will contribute, in principle, to the semiclassical Green func-
shadow boundany.At the angle specifying the geometrical tion in all three regions. For example, férstill in the range
shadow,0=2cos Y(a/R), v is zero and the Fresnel factor is (0,7), there is a somewhat longer diffractive path to the
equal to3.] The second term in Eq30) is the glancing  shadow region which creeps around an arc on the opposite
contribution, which depends on whethérlies outside or side of the inner circle. Théositive value of the creeping
inside the region of the geometrical shadow. Hereangle for this path isy,=2m—2 cos Y(a/R)— 6, which has
L,=(R?-a?'? and the— and+ signs apply to the upper its smallest value whem= . This path, and other even
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0.4 0.4

0.2 - 0.2

1G(8;k)|
IG(6;k)]

0.2

1G(6:k)I
1G(8:k)l

1 2 2
6 (rad) 6 (rad)

FIG. 4. |G(6;k)| as a function ofg, for a=0.1R. The solid FIG. 5. The same as Fig. 4 far=0.3R. Upper plot: eigenvalue
curves are the exact Green function, calculated from Eg)sand k=9.939 calculated with N=200; lower plot: eigenvalue
(6). The dotted curves are the Bogomolny semiclassical Green funde=49.959 calculated wittN=300.
tion, as explained in the text. The dashed curves are the semiclas-
sical Green function calculated from Eq80) and(31), which de-  Green function is assumed to be zero in the region of the
scribe the diffractive paths in the penumbra and shadow regionggeometrical shadow. This approximation, which we shall call
Upper plot: eigenvaluk=9.936 calculated witiN=200; lower  the Bogomolny semiclassical approximatjas shown as the
plot: eigenvaluek=49.959 calculated wittN=250. Herek is re-  dotted curves in Figs. 4—6. Fareigenvalues close to 10 and
lated to the energy byE=#%?/(2m), in units in which 50 the dotted curves are very close to the exact Green func-
fi=m=1. N is the dimension of th& matrix, which is equal to the  jop, throughout the region €@ #< Oip. but there are notice-
number of cells on the PSS. able differences in the penumbra region where(g6) is not

valid.
longer paths, which have their mathematical origin in the The modifications to the penumbra and shadow regions,
sum overM in Eq. (25), can be included in the semiclassical calculated from Eqs(30) and(31), are shown as the dashed
Green function(in any region by adding contributions like curves in Figs. 4-6.The sum oven in Eq. (31) was taken
Eq. (31), with 6 replaced by6+27M, M==1*2,....  over ten termd.It may be seen that the agreement between
However, we have neglected all such contributions in thehese curves and the exact Green function is very good. It is
calculations that we are about to describe, since it was foundatisfying, though somewhat surprising, that keeping only
that when the shadow region exists, the contributionthe leading terms of Nussenzveig’'s expansions for the pen-
G§,5>(a;k) from theshortestcreeping path became negligible
well before 6= 7. 0.4

We are now in a position to consider different semiclas-
sical approximations to the Green function, and compare r
them with the exact Green function. In Figs. 4—6, which
correspond to the radiws of the inner circle being equal to
0.1R, 0.3, and 0.R, respectively, the solid curves show the Y
modulus of the exact Green function, calculated as described
in Sec. Il. Plots for two differenk-eigenvaluegclose to 10
and 50 are shown in each case. The solid bar underéhe
axis indicates the penumbra region in each plot, extending
from 6;, given by Eq.(27) to 6,5 given by Eq.(28).

The simplest semiclassical approximation consists of
G{(6;k) given by Eq. (29 being employed, not only
throughout the illuminated region, but also into the penum-
bra region, until the straight line joiningR(0) to (R, ) is
tangent to the inner circle. We have shown that this expres- . LN |
sion is exactly the same as Bogomolny’s semiclassical Green 0 0 1 5 3
function on the Poincarsurface of section, chosen to be the 8 (rad)
outer circle of the annulysee Eq(3.10 of Ref.[28]]. Thus,
this approximation is equivalent to Bogomolny's Poinicare FIG. 6. The same as Fig. 4 far=0.5R. Upper plot: eigenvalue
map from R,0) to (R, #) involving two classical trajectories, k=10.189 calculated withN=250; lower plot: eigenvalue
the direct one and the one reflected from the inner circle. Th&=49.999 calculated witiN=350.

IG(8;k)|
o
Do
|

1G(0:k)l
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umbra, Eq.(30), accounts for almost all of the difference 3
between Bogomolny’s semiclassical approximation and the L
exact Green function. We also note that in Fig. 6, where a
shadow region exists, the contribution given by E2fl) is

too small to be visible on the plots.

IT(6:k)l

IV. TRANSFER OPERATOR INCLUDING
DIFFRACTIVE PATHS

We now turn to the calculation of the transfer operator in
the two approximations described in Sec. lll. Guided by
Bogomolny’s route from the semiclassical Green function to
the transfer operatof28], and by Egs.(12) and (13), we
postulate the semiclassical transfer operator to be

IT(6:%)]

if?
Todik) ==~ 2 (kReos)Gul 6:K), (32

0 1 2
g (rad)

where the sum is over different geometrical paths from

(R,0) to (R,6). [In the notation of Eq(1), ¢ is [6"— 6’| ] FIG. 7. |T(6;k)| as a function off, for a=0.1R. The solid
Here ¢ is the angle between the inward normal to the outercurves are the exact transfer operator, calculated fronfZy. The
circle and the direction of the geometrical path immediatelydotted curves are the Bogomolny semiclassical approximation, as
after being reflected from the outer circle a@,0) or at explained in the text. The dashed curves are the semiclassical ap-
(R,60). In Eq. (32), Gs{ 6;k) is a semiclassical Green func- proximation calculated from Eq32) using Egs.(30) and (31),

tion, which may have different forms in the illuminated, pen-which describe the diffractive paths in the penumbra and shadow
umbra, and shadow regions. As in Bogomolny’s the@8§j, regions. Upper plot: eigenvalde=9.936 calculated wittN=250;

the direct zero-length trajectories correspondingte0 are  lower plot: eigenvalug=49.959 calculated witN = 250.

excluded fromGg¢{ 0;k) in Eq. (32), but G4{0;k) includes

the classical trajectory along the radial direction which re-constructed using purely classical trajectories. Finally, the
turns to R,0) after bouncing off the inner circle. Note that dashed curves in the figures were constructed from(&2).

T{ 6;k) requires information only about the classical trajec-using the semiclassical approximation&9)—(31) for
tories and diffractive paths. G{(6;k), GP(6;k), andG(6;k) in the three regions.

As in the case of the exadt matrix, Egs.(19) and(20), The most striking feature of Figs. 7-9 is the large oscil-
we construct a finite approximation to the semiclassital lations occurring in the illuminated region of each plot.
operator by dividing the Poincamurface of section intdN These come from the interference between the two terms in
cells of width A9=27/N. The N distinct matrix elements EQ. (29), the direct term and the reflected term. From Egs.
are (29) and (32) the contribution to thel operator from the

direct path is

ihZ 3
== -2 (kReosp)Gsd 6;:K)A0, (33 -
paths = 2 |-
=<
whereg; is the angle between the inward normal to the outer i;, i

circle and the particular classical or diffractive path involved
in going from =0 to 6;. Equations(24) and (33) enable
us to calculate the energy eigenvalues using different semi-
classical approximations fdB( 6, ;k).

Figures 7—9 shoWT(#;k)| for the same cases as the ear-
lier plots of |G(6;k)|. As before, the solid bar under the
axis indicates the extent of the penumbra in each case. The
solid curves are the exact quantum-mechanical transfer op-
erator calculated from E@21), with g,(R,R;k) given by Eq.
(6). The dotted curves correspond to Bogomolny’s semiclas-
sical approximation. They were calculated from E2R) by
replacing G¢{ 6;k) by the semiclassical approximation >
G{(6;k) for the illuminated region, Eq(29), employed 6 (rad)
from #=0 to the angle at which the straight line joining
(R,0) to (R,0) is tangent to the inner circle. Beyond this  FIG. 8. The same as Fig. 7 far=0.3R. Upper plot: eigenvalue
angle the Green function was set equal to zero. This approxik=9.939 calculated with N=200; lower plot: eigenvalue
mation is, in fact, exactly the same as that given by @}).  k=49.959 calculated witiN=300.

IT(6:k)l
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=2 = 0.015
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& -0.015
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= § -0.015
-0.03 | | |
1 > . 2 225 25
8 (rad) 0 (rad)
FIG. 9. The same as Fig. 7 far=0.5R. Upper plot: eigenvalue FIG. 11. Comparison of the two terms contributing to the semi-
k=10.189 calculated withN=250; lower plot: eigenvalue classical transfer operator in the penumbra. The dotted curve is the
k=49.999 calculated witiN = 350. real part of the direct contribution, given by E®4) multiplied by

the Fresnel factor. The dashed curve is the real part of the glancing

0 i3m/4 . U . _ contribution, given by Eq(32) with the second term of30) sub-
Ty'(0:k)= m[kRsm( 0/2) ]~ “exd i2kRsin(6/2)]. stituted forG¢{ #;k). In the lower part of the figure, the solid curve

(34) is the sum of these two contributions.

In the upper part of Fig. 10, the real part of this expression isvhere L,/2=[R?+a?— 2aRcos@2)]*2 In Eq. (35), as in
plotted as a function of), for the case shown in the lower Eq. (29), « is the angle between the inward normal to the
part of Fig. 9. One can see that the fadtsin(9/2)]¥? causes  outer circle and the reflected path &,0) or (R, 6); it is the
the amplitude of the oscillations to increase graduallyyas same as the angl¢ in Eq. (32). The real part of Eq(35) is
goes from 0 tof;,, the penumbra boundary. Similarly, the plotted as a function o# in the lower part of Fig. 10. The
contribution to theT operator from the reflected path is, amplitude factor in this expression is a maximuméat 0
RE (Reosx— L ,/2) 12 (where «=0), and steadily decreases asgoes from 0 to
TW(0;k) = — ~——(kRcosy) 12 2 kL, 0, - Figure 10 makes it plausible that the eight oscillations in
2m |TM(6;k)| in the lower part of Fig. 9 result from interference
(39 petween the 12 oscillations of the direct term and the four
oscillations of the reflected term in the illuminated region.

0.03 |- (Note that the jagged peaks and troughs in the upper part of
~ - Fig. 10 are due to the limited number of points used to plot
= 0.015 i~ [\[\ f\ /\ [\ the curve)
= 0 ‘}/\ /\ We have performed a similar comparison of the contribu-
=5 ) \/ v v v tions toT{P)(9;k) in the penumbra, again for the case shown
g -0.015 = in the lower part of Fig. 9. The results are shown in Fig. 11.

_003 & In the upper part of the figure, the dotted curve is the real
' part of Eq.(32) coming from the first term of Eq.30). This
0.03 I~ has the same form as E(B4) for the illuminated region,
Z 0015 ¢ /\ multiplied by the Fresnel factdiF (=) —F(»)]/(2i)" The
& C /\ [ Fresnel factor causes the oscillations to decrease in ampli-
=, 0 tude asf goes through the penumbra frafip to 6,5. On the
% 0015 L \/ v \/ same plot the dashed curve is the real part of B8) com-
NS C ing from the second term of Eq30), calculated with
~0.03 v | cosp=L,/R. It oscillates with constant amplitude and almost-
0 05 ) 15 constant wavelength(The term =avy, in the exponential

8 (rad) function, which goes smoothly from a negative to a positive
value as#é increases through the penumbra, is small com-
FIG. 10. Comparison of the two terms contributing to the semi-Paréd to 2.;.) Close to the shadow boundary, the two con-
classical transfer operator in the illuminated region. The uppeffioutions may be seen to be comparable in magnitude. In the
curve is the real part of the direct contribution given by Ez).  lower part of Fig. 11 we have plotted the sum of these con-
The lower curve is the real part of the reflected contribution giventributions toT{(6;k).
by Eq.(35). There are other points of interest in Figs. 7—-9. First, there
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is the obvious feature that, in the penumbra, the semiclassical 100
approximation which properly describes diffractive effects in
this region is close to the exact curves, particularly for the
higherk eigenvalues. In contrast, the dotted curves, calcu-
lated from Bogomolny’s semiclassical approximation, dis-
play a discontinuity at the angle of the geometrical shadow 60
boundary. It is also noteworthy that in the illuminated region, &)
for anglesé up to about 1 rad, the amplitude of the oscilla- Z
tions of the semiclassical transfer operator is larger than that

of the exact transfer operator, although the number of oscil-

lations and the phases are in good agreement. Finally, we 20
note that the exact transfer operator displays small oscilla-

tions of relatively short wavelength, most clearly visible in 0
Figs. 8 and 9. We attribute these to the cutoff in the sum over

| in Eqg.(21) at|l|=kR. We suspect these oscillations may be

physical since the energy eigenvalues calculated from Egs.

(20) and (23) agree with the exact quantum energies to Six FIG. 12. Comparison of the exact staircase funchifi) (solid

significant figures, as was mentioned near the end of Sec. Ifurv® with the Thomas-Fermi approximatiohi;=(E) (dashed
curve given by Eq.(36).

80

40

V. SEMICLASSICAL AND EXACT
ENERGY EIGENVALUES

It remains to present the results of calculations of the
energy eigenvalues in the two different semiclassical ap- TABLE I. Comparison of the semiclassical scaled energy eigen-
proxima‘[ions described above, and compare them with th®alues, in three different approximations, with the exact scaled en-
exact energy eigenvalues. As a standard for comparison, w9y eigenvalues. Case=0.1R.
also give the energy eigenvalues calculated using the simpfe |

Einstein-Brillouin-Keller quantization scheme. n Efn Ejn Efy " ERe
In the discus;iqp that follows it will be advar?tageous to 1.096 0633 0.966 0.895
usescaledenergies, such th{;\t the mean separation between 1.477 1.690 1.916 1.676
Fhe qpantum energy Ieve(lti?‘tklng degenerames into account 3.633 3.760 3.858 3717
is unity. The scaled energies are defined to be 6.475 6.350 6.606 6.567
_ m(RZ—aZ) m \ 12 8.223 9.432 7.988 7.867
E=N.(E)= TE— (W) (R+a)EY2 (36) 8.269 9.128 9.674 9.268
9.965 9.620 10.083 10.078

12.844 13.260 13.439 13.052
14.083 13.802 14.241 14.218
18.143 18.154 18.398 18.226
18.811 18.874 19.088 18.970
21.382 23.803 21.650 20.946
23.788 22.123 23.023 22.681
24.136 23.588 24.276 24.216
24.139 24.715 24.491 24.322
26.966 27.963 28.263 27.648
30.058 31.089 30.438 30.266
30.805 29.962 30.858 30.894
34.702 35.044 35.279 34.853
36.561 37.538 36.946 36.794
38.134 37.398 38.187 38.231
40.572 43.358 41.843 40.089
42.944 40.856 42.116 42.022
43.151 42.672 43.458 43.229
43.641 43.822 44.007 43.900
46.109 45.793 46.280 46.217
45.985 47.999 48.456 47.741

HereN;g(E) is the Thomas-Fermi approximation to the ex-
act staircase functiohN(E), the number of quantum states
having energy less thaR. It was calculated by a method
similar to that described in a well-known paper by K40].

The first term is determined by the area of the billiard do-
main, while the second term depends on the length of the
boundary(both circleg. The scaled quantum energy eigen-
valuesE,, , related to the unscaled energy eigenvalkgs

by Eq.(36), have a mean separation of unity. In Fig. 12 the
solid curve is the staircase function constructed from the ex-
act quantum energy eigenvalues ugete 200, taking degen-
eracies into account. The dashed line, which is a plot of
N+e(E) given by Eq.(36), is clearly an excellent approxima-
tion to N(E) over this energy range.

The results for the scaled energy eigenvalues, calculated
by means of Eqs(24), (33), and(36), are shown in Tables
-1, which list the first 30 distinct energy levels for the
casesa=0.1R, a=0.3R, anda=0.5R, respectively. The re- 10
sults in columns 4, 5, and 6 of the tables were calculated 7
from Eq.(24), with N chosen to be 100. Since the eigenvalue 2

P RPOOOWUONNRA_ARPOOWOUAOND™MEPOWNLEO

N WEFRPANPORAMDMNPWONMPWERPNWWOWERPNENENNRPRPREPR

curve \o(k) for I =0 is nondegenerate, while for=0 the 11 51.294 50.991 51.581 51.579
curves\ (k) and A _;(k) are degenerate, only the distinct 5 52.297 51.151 52.400 52.373
eigenvalues corresponding ke 0,1,2, ... are listed in the 8 54.721 55.001 55.014 54.839
tables. The first column gives the value of the curve 0.508 0.991 0.425

N\i(K), and the second column gives tleeossing number
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TABLE Il. The same as Table | for the caae=0.3R. TABLE lll. The same as Table | for the case=0.5R.
| n EF:,EBK Eisrg:,Bog Eisr(]:,diff Eﬁi(ad | n Eisr(]:,EBK Elsr(]:,Bog Eisr(]:,diff Eﬁ;(act
0 1 1.665 2.480 1.915 1.561 0 1 2.690 2.943 3.060 2.630
1 1 2.205 1.923 2.153 1.979 1 1 2.947 3.360 3.228 2.869
2 1 2.603 3.265 3.327 3.252 2 1 3.744 4,424 3.738 3.595
3 1 5.035 4,935 5.470 5.372 3 1 5.143 4,590 5.048 4.835
4 1 8.069 7.866 8.293 8.265 4 1 5.032 6.587 6.784 6.613
5 1 11.683 11.613 11.859 11.834 5 1 7.757 8.416 9.060 8.943
0 2 12.495 12.864 13.083 12.347 6 1 10.951 11.464 11.915 11.823
1 2 13.137 13.944 13.355 12.939 7 1 14.604 14.837 15.283 15.243
2 2 15.128 15.191 14.935 14.727 8 1 18.709 18.485 19.164 19.186
6 1 15.861 15.685 16.035 16.011 0 2 20.184 21.514 20.346 20.107
3 2 15.269 17.357 17.885 17.730 1 2 20.500 20.275 20.715 20.416
7 1 20.593 20.179 20.805 20.758 2 2 21.451 21.124 21.849 21.345
4 2 20.590 21.106 22.054 21.921 3 2 23.050 23.921 23.706 22.904
8 1 25.869 25.658 26.204 26.055 9 1 23.259 23.192 23.515 23.630
5 2 26.536 26.789 27.337 27.202 4 2 25.318 26.349 25.789 25.103
9 1 31.683 31.938 32.072 31.892 5 2 28.282 29.769 28.391 27.956
0 3 32.489 31.110 32.635 32.326 10 1 28.249 27.873 28.478 28.558
1 3 33.169 34.115 33.681 32.980 6 2 31.979 31.820 31.663 31.476
6 2 33.092 33.130 33.529 33.423 11 1 33.676 33.173 33.892 33.952
2 3 35.235 36.087 35.760 34.951 7 2 36.458 35.777 35.867 35.672
10 1 38.029 38.484 38.500 38.261 12 1 39.535 39.319 39.788 39.800
3 3 38.770 39.976 38.604 38.270 8 2 41.791 39.803 40.833 40.549
7 2 40.245 39.619 40.439 40.432 13 1 45.823 45.296 46.067 46.090
4 3 43.953 41.987 43.199 42.967 9 2 42,714 45.237 46.363 46.102
11 1 44.903 45.238 45.400 45.159 10 2 49.787 51.756 52.527 52.322
8 2 47.985 47.020 48.135 48.122 0 3 52.483 51.527 52.988 52.400
5 3 45.805 48.110 49.163 49.045 1 3 52.818 53.368 53.052 52.732
12 1 52.300 52.945 52.721 52.580 14 1 52.538 52.174 52.898 52.815
9 2 56.305 55.632 56.491 56.430 2 3 53.826 54,517 53.952 53.729
6 3 54.651 56.145 56.688 56.447 3 3 55.510 56.164 55.748 55.396
0.908 0.730 0.299 0.940 0.747 0.319

i.e., the count for the number of times the cuivgk) has o

crqssed the real axis at1, as illustrated in Fig. 1._ Column S,= p,do=2xL=lh, 1=0,1,2,..., (37)

4 lists the scaled energy eigenvalues calculated in Bogomol-

ny’s semiclassical approximation, described above. The fifth

column lists the semiclassical scaled energy eigenvalues cal- . .

culated including diffractive paths in the penumbra angWhereL is the constant classical angular momentum, and

shadow regions. Finally, column 6 gives the exact quantum-

mechanical scaled energies calculated from E6) and R

(24). At the bottom of columns 4 and 5 we give the root- S = é prdr=2J

mean-squarérms) deviation of the scaled semiclassical en- '

ergy eigenvalues listed in that column from the exact scaled =(n—1+pB/4)h, n=1.2,.... (39)

energies. These numbers reflect what is clearly evident in the

tables, namely, that in comparison with Bogomolny’s semi-

classical approximation, the inclusion of diffractive effects The lower limit of this radial integral is either the classical

brings the energy eigenvalues into much better agreemettitrning pointr ;=1%/(2mE)*'2, or the radiusa of the inner

with the exact energies. In fact, the rms deviation is reducedgircle of the annulus, whichever is larger. Whey»>a, the

by almost 60% in each case. value of 8 is 3, corresponding to a “soft” turnaround caused
In judging the relative merit of the two semiclassical ap- by thel?#?%/r? potential. On the other hand, whep<a, the

proximations described above, it is helpful to compare thenvalue of 8 is 4, since in this case the particle makes a hard-

with a much simpler semiclassical approximation, namelywall collision with the inner circle of the annulus. Note that

the Einstein-Brillouin-Keller (EBK) quantization scheme. the integer on the right-hand side of E§8) has been writ-

(See, for example, Reff2], p. 214) The EBK energy eigen- ten asn—1, with n=1,2,..., in order thatn will corre-

values for the annulus billiard are obtained by quantizing thespond to the crossing number defined above. Working out

two independent action integrals, the integral in Eq(38) for givenl andn leads to an equation

(2mE—1%%2/r?)Y2dr

min
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ENERGY DIFF
ENERGY DIFF

R
=

FIG. 13. Deviations of the scaled semiclassical energy eigenval-
ues from the exact scaled energy eigenval&gs Ep plotted
against the scaled ener@y Dotted circles joined by dotted lines: . L . .
EBK approximation. Crosses joined by dashed lines: Bogomolny's  Finally, the deviations of the semiclassical scaled energy
approximation. Solid circles joined by solid lines: approximation €igenvalues from the exact scaled energy eigenvalues,
including diffractive effects. System wita=0.1R. e~ EXe are plotted against the scaled eneEgyn Figs.

13-15, for the first 30 distinct energy levels. The figures are

for E;, which can be solved by an iterative procedure, start{or the three casea=0.1R, 0.3, and 0.8, respectively. In

ing from a good estimate fcE,, . The solution is the EBK each figure, thg dptted circl¢mined by dotted straight lings

energy eigenvalue. The scaled energy eigenvalues calculat§gOW the deviations of the EBK eigenvalues, the crosses

in this way are given in column 3 of the tables. (J_omed by dashed Ime}:art—_z the deviations of the Bogomolny
At the bottom of column 3 is the rms deviation of the elgenva_lue_zs, and the s_olld circlgsined by solld_llney_s are

scaled EBK energy eigenvalues from the exact scaled eneré{?e de\(lat|ons of the elgenvalugs calculated with d|ffr.ac_t|ve

eigenvalues. For the case=0.1R, the rms deviation for the corrections. The plots show quite clearlly that the_dewatlons

EBK eigenvalues is about half that obtained from Bogomol-2€ smallest, on average, when .dlffl’aCtI.Ve corrections are in-

ny's semiclassical approximation. However, for the Othercluded.Apar_t f_rom th_at ob_servatlon,whlch is consistent with

two cases, the rms deviation for the EBK eigenvalues idn€ rms deviations given in the tables, the only pattern that

larger than the Bogomolny results. Thus the EBK quantizalVe have found is that the three large positive peaks in Fig.

tion scheme appears to give good results when the radius ¢ Pelonging to the Bogomolny approximation, correspond

the inner circle of the annulus is small, but not very goodt© the energy eigenvalues=<0, n=2), (I=0, n=3), and

results when it is larger. Roughly speaking, however, thd!=0,n=4).

EBK and Bogomolny semiclassical approximations are of

comparable accuracy for the annulus billiard. In comparison

to these, the results calculated with the inclusion of diffrac- VI. CONCLUSION

tive effects are significantly better.

FIG. 15. The same as Fig. 13 for the system veith0.5R.

In this paper we have reported the results of a study of
diffractive effects in a simple two-dimensional system, the
annulus billiard. Starting from the boundary integral method,
we obtained the exact quantum-mechanical transfer operator
and two different semiclassical approximations of it. The
simplest semiclassical approximation, formulated by Bogo-
molny[28], is constructed from purely classiddewtoniar)
trajectories. To go beyond this, one must include the wave
character of the quantum particle in some approximate way.
Our studies of the annulus billiard, together with those of
Primacket al.[27] on the Sinai billiard, show that the most
important diffractive effects associated with a disk come
from paths which lie in the penumbra, the region situated on
3 both sides of the geometrical shadow boundary. By employ-
L T ing an expansion of the Green function appropriate for this

region, we find that both the Green function and the transfer
0 20 40 operator are brought into much better agreement with their
exact quantum counterparts. Moreover, the corresponding
semiclassical energy eigenvalues are much closer to the ex-
FIG. 14. The same as Fig. 13 for the system veith0.3R. act quantum energies, the rms deviation over the lowest 30

ENERGY DIFF

R
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distinct eigenvalues being reduced by more than a factor ahe angled= 6;— 6, is taken to be less tham.
2. In the illuminated region, the Hankel functioht™ (kR)
An advantage of the semiclassical approach is that, ijnd H,"(ka) in Eq. (26) were approximated by the Debye
contrast to the exact quantum-mechanical formulation, it engsymptotic expansiorifef.[38], Eq. (A.16)]. These expan-
ables one to interpret various features of the transfer operasons forH:"(x) are valid for complex in the neighborhood
tor. The large oscillations in the illuminated region in Figs. of the positive real axis provided<ORe{I}<x. The expan-
7-9 have been identified as resulting from interference besjons fail for the reflected contribution to E¢9 when
tween the classical direct path and the path reflected from thg _ ka|~(ka) 183 je. whenkRcos@2) — ka~ (ka) 13 This
inner circle (Fig. 10. Likewise, the steady decrease in getg the maximum permissible valuefor the illuminated
|T(®(g;k)| through the penumbra results from the Fresnekegion at[27,39
factor which almost completely turns off the direct contribu- ’

tion as# goes fromé;, to 6. In a representative case, we . ka+ (ka)Y?

have found that the direct contributiofcontaining the 0 max=2 COS | —— 5~ (A1)
Fresnel factorand the glancing contribution are of compa-

rable size near the shadow boundéfig. 11). Finally, when The condition for the validity of the approximations in the

a shadow region exists as in Fig. 9, the contribution to theyenumbra region, leading to E€g0), is [38,39
transfer operator in this region is barely visible on the plots.

As a last observation we note, from Eq29)—(31) and |cos Y(a/R)— /2| <(ka) 3. (A2)
Eq. (32), that the contributions to the transfer operator in the
three regions are all of the same order#in namely,#°.  Hence the penumbra region extends frégimin t0 O max,
However, if we consider the dependence on the wave vectovhere
k, it is evident that the contributions to tileoperator from

the illuminated region and the direct term of Eg0) for the 6p,min=2 cos (a/R) —2(ka) ~*?, (A3)
penumbra vary ak2 whereas the contribution to E@O) 1 s
from the paths depicted in Fig. 2 and the shadow contribu- Op,max=2 €OS “(a/R) +2(ka) . (A4)

tion based on Eq(31) vary ask'. Because of this small
difference, the former contributions will become relatively
more important a& increases.

Calculations show thawhenka>1) 6; nax> 0p min, imply-
ing that the illuminated region overlaps the penumbra. It is
natural, therefore, to choose the boundary between the two
regions to bey= 3(6; maxt Op,min), Which yields Eq.(27).

If Eq. (A4) yields a value ford, .« greater thanr, there

We would like to thank Niall Whelan for introducing us is no shadow region. However, when a shadow region exists
to diffractive effects in semiclassical physics, and for hisand the summation in E31) is performed over the first few
help and encouragement. We would also like to thank Rajazeros ofH,"(ka), the contribution from further zeros may be
Bhaduri, Julie Lefebvre, and Peiging Tong for helpful sug-neglected providedRef. [38], Eq. (5.10] Yo>(ka) 13,
gestions at various stages of this project. This research waghere vy, is the creeping anglesimilar to that shown in the
supported by the Natural Sciences and Engineering Researtdwer part of Fig. 3. Sinced=2 cos }(a/R)+1y,, the mini-
Council of Canada. mumpermissible value of in the shadow region is
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APPENDIX: BOUNDARY POINTS Os,min=2 c0S Y(a/R) +(ka) 13, (A5)

BETWEEN THE REGIONS L.
which is less thard, ... Therefore, the boundary between

In this appendix we describe how the boundary points othe penumbra and the shadow region will be taken to be
the three regions in Fig. 1 are determined. In what follows,6ps= 3(0p maxt 0s,min), Which gives Eq(28).
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